60 resultados para Event data recorders.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops the model of a prototype system for the digital lodgement of spatial data sets with statutory bodies responsible for the registration and approval of land related actions under the Torrens Title system. Spatial data pertain to the location of geographical entities together with their spatial dimensions and are classified as point, line, area or surface. This dissertation deals with a sub-set of spatial data, land boundary data that result from the activities performed by surveying and mapping organisations for the development of land parcels. The prototype system has been developed, utilising an event-driven paradigm for the user-interface, to exploit the potential of digital spatial data being generated from the utilisation of electronic techniques. The system provides for the creation of a digital model of the cadastral network and dependent data sets for an area of interest from hard copy records. This initial model is calibrated on registered control and updated by field survey to produce an amended model. The field-calibrated model then is electronically validated to ensure it complies with standards of format and content. The prototype system was designed specifically to create a database of land boundary data for subsequent retrieval by land professionals for surveying, mapping and related activities. Data extracted from this database are utilised for subsequent field survey operations without the need to create an initial digital model of an area of interest. Statistical reporting of differences resulting when subsequent initial and calibrated models are compared, replaces the traditional checking operations of spatial data performed by a land registry office. Digital lodgement of survey data is fundamental to the creation of the database of accurate land boundary data. This creation of the database is fundamental also to the efficient integration of accurate spatial data about land being generated by modem technology such as global positioning systems, and remote sensing and imaging, with land boundary information and other information held in Government databases. The prototype system developed provides for the delivery of accurate, digital land boundary data for the land registration process to ensure the continued maintenance of the integrity of the cadastre. Such data should meet also the more general and encompassing requirements of, and prove to be of tangible, longer term benefit to the developing, electronic land information industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes and analyses the procurement processes employed in delivering the Sydney Olympic Stadium – arguably the most significant stadia project in the region today. This current high profile project is discussed in terms of a case study into the procurement processes used. Interviews, personal site visits and questionnaires were used to obtain information on the procurement processes used and comments on their application to the project. The alternative procurement process used on this project—Design and Construction within a Build, Own, Operate and Transfer (BOOT) project—is likely to impact on the construction industry as a whole. Already other projects and sectors are following this lead. Based on a series of on-site interviews and questionnaires, a series of benefits and drawbacks to this procurement strategy are provided.The Olympic Stadium project has also been further analysed during construction through a Degree of Interaction framework to determine anticipated project success. This analysis investigates project interaction and user satisfaction to provide a comparable rating. A series of questionnaires were used to collect data to calculate the Degree of Interaction and User Satisfaction ratings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During a major flood event, the inundation of urban environments leads to some complicated flow motion most often associated with significant sediment fluxes. In the present study, a series of field measurements were conducted in an inundated section of the City of Brisbane (Australia) about the peak of a major flood in January 2011. Some experiments were performed to use ADV backscatter amplitude as a surrogate estimate of the suspended sediment concentration (SSC) during the flood event. The flood water deposit samples were predominantly silty material with a median particle size about 25 μm and they exhibited a non-Newtonian behavior under rheological testing. In the inundated urban environment during the flood, estimates of suspended sediment concentration presented a general trend with increasing SSC for decreasing water depth. The suspended sediment flux data showed some substantial sediment flux amplitudes consistent with the murky appearance of floodwaters. Altogether the results highlighted the large suspended sediment loads and fluctuations in the inundated urban setting associated possibly with a non-Newtonian behavior. During the receding flood, some unusual long-period oscillations were observed (periods about 18 min), although the cause of these oscillations remains unknown. The field deployment was conducted in challenging conditions highlighting a number of practical issues during a natural disaster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article investigates the role of information communication technologies (ICTs) in establishing a well-aligned, authentic learning environment for a diverse cohort of non-cognate and cognate students studying event management in a higher education context. Based on a case study which examined the way ICTs assisted in accommodating diverse learning needs, styles and stages in an event management subject offered in the Creative Industries Faculty at Queensland University of Technology in Brisbane, Australia, the article uses an action research approach to generate grounded, empirical data on the effectiveness of the dynamic, individualised curriculum frameworks that the use of ICTs makes possible. The study provides insights into the way non-cognate and cognate students respond to different learning tools. It finds that whilst non-cognate and cognate students do respond to learning tools differently, due to a differing degree of emphasis on technical, task or theoretical competencies, the use of ICTs allows all students to improve their performance by providing multiple points of entry into the content. In this respect, whilst the article focuses on the way ICTs can be used to develop an authentic, well-aligned curriculum model that meets the needs of event management students in a higher education context, with findings relevant for event educators in Business, Hospitality, Tourism and Creative Industries, the strategies outlined may also be useful for educators in other fields who are faced with similar challenges when designing and developing curriculum for diverse cohorts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process mining encompasses the research area which is concerned with knowledge discovery from information system event logs. Within the process mining research area, two prominent tasks can be discerned. First of all, process discovery deals with the automatic construction of a process model out of an event log. Secondly, conformance checking focuses on the assessment of the quality of a discovered or designed process model in respect to the actual behavior as captured in event logs. Hereto, multiple techniques and metrics have been developed and described in the literature. However, the process mining domain still lacks a comprehensive framework for assessing the goodness of a process model from a quantitative perspective. In this study, we describe the architecture of an extensible framework within ProM, allowing for the consistent, comparative and repeatable calculation of conformance metrics. For the development and assessment of both process discovery as well as conformance techniques, such a framework is considered greatly valuable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to predict process delays via a method for configuring so-called Process Risk Indicators(PRIs). The method learns suitable configurations from past process behaviour recorded in event logs. To validate the approach we have implemented it as a plug-in of the ProM process mining framework and have conducted experiments using various data sets from a major insurance company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is only in recent years that the critical role that spatial data can play in disaster management and strengthening community resilience has been recognised. The recognition of this importance is singularly evident from the fact that in Australia spatial data is considered as soft infrastructure. In the aftermath of every disaster this importance is being increasingly strengthened with state agencies paying greater attention to ensuring the availability of accurate spatial data based on the lessons learnt. For example, the major flooding in Queensland during the summer of 2011 resulted in a comprehensive review of responsibilities and accountability for the provision of spatial information during such natural disasters. A high level commission of enquiry completed a comprehensive investigation of the 2011 Brisbane flood inundation event and made specific recommendations concerning the collection of and accessibility to spatial information for disaster management and for strengthening community resilience during and after a natural disaster. The lessons learnt and processes implemented were subsequently tested by natural disasters during subsequent years. This paper provides an overview of the practical implementation of the recommendations of the commission of enquiry. It focuses particularly on the measures adopted by the state agencies with the primary role for managing spatial data and the evolution of this role in Queensland State, Australia. The paper concludes with a review of the development of the role and the increasing importance of spatial data as an infrastructure for disaster planning and management which promotes the strengthening of community resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioacoustic data can provide an important base for environmental monitoring. To explore a large amount of field recordings collected, an automated similarity search algorithm is presented in this paper. A region of an audio defined by frequency and time bounds is provided by a user; the content of the region is used to construct a query. In the retrieving process, our algorithm will automatically scan through recordings to search for similar regions. In detail, we present a feature extraction approach based on the visual content of vocalisations – in this case ridges, and develop a generic regional representation of vocalisations for indexing. Our feature extraction method works best for bird vocalisations showing ridge characteristics. The regional representation method allows the content of an arbitrary region of a continuous recording to be described in a compressed format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.