653 resultados para Evacuation of civilians
Resumo:
If current population and accommodation trends continue, Australian cities will, in the future, have noticeable numbers of apartment buildings over 60 storeys high. With an aging population it follows that a significant proportion of those occupying these buildings will be senior citizens, many of whom will have some form of disability. For these occupants a fire emergency in a high rise building presents a serious problem. Currently lifts cannot be used for evacuation and going down 60 storeys in a fire isolated staircase would be physically impossible for many. Therefore, for many, the temptation to remain in one’s unit will be very strong. With an awareness of this behaviour trend in older residents, many researchers have, in recent years, explored the possible wider use of lifts in a fire emergency. So far the use of lifts for evacuation has been approved for a small number of buildings but wide acceptance of this solution is still to be achieved. This paper concludes that even in high-rise apartment buildings where lifts are approved for evacuation, architects should design the building with alternative evacuation routes and provide suitable safe refuge areas for those who cannot use the stairs when the lifts are unavailable.
Resumo:
Floods through inundated urban environments constitute a hazard to the population and infrastructure. A series of field measurements were performed in an inundated section of the City of Brisbane (Australia) during a major flood in January 2011. Using an acoustic Doppler velocimeter (ADV), detailed velocity and suspended sediment concentration measurements were conducted about the peak of the flood. The results are discussed with a focus on the safety of individuals in floodwaters and the sediment deposition during the flood recession. The force of the floodwaters in Gardens Point Road was deemed unsafe for individual evacuation. A comparison with past laboratory results suggested that previous recommendations could be inappropriate and unsafe in real flood flows.
Resumo:
The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Floods through inundated urban environments constitute a hazard to the population and infrastructure. A series of field measurements were performed in an inundated section of the City of Brisbane (Australia) during a major flood in January 2011. Using an acoustic Doppler velocimeter (ADV), detailed velocity and suspended sediment concentration measurements were conducted about the peak of the flood. The results are discussed with a focus on the safety of individuals in floodwaters and the sediment deposition during the flood recession. The force of the floodwaters in Gardens Point Road was deemed unsafe for individual evacuation. A comparison with past laboratory results suggested that previous recommendations could be inappropriate and unsafe in real flood flows.
Resumo:
Passenger experience has become a major factor that influences the success of an airport. In this context, passenger flow simulation has been used in designing and managing airports. However, most passenger flow simulations failed to consider the group dynamics when developing passenger flow models. In this paper, an agent-based model is presented to simulate passenger behaviour at the airport check-in and evacuation process. The simulation results show that the passenger behaviour can have significant influences on the performance and utilisation of services in airport terminals. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
The traditional model for information dissemination in disaster response is unidirectional from official channels to the public. However recent crises in the US, such as Hurricane Katrina and the Californian Bushfires show that civilians are now turning to Web 2.0 technologies as a means of sharing disaster related information. These technologies present enormous potential benefits to disaster response authorities that cannot be overlooked. In Australia, the Victorian Bushfires Royal Commission has recently recommended that Australian disaster response authorities utilize information technologies to improve the dissemination of disaster related, bushfire information. However, whilst the use of these technologies has many positive attributes, potential legal liabilities for disaster response authorities arise. This paper identifies some potential legal liabilities arising from the use of Web 2.0 technologies in disaster response situations thereby enhancing crisis related information sharing by highlighting legal concerns that need to be addressed.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
Emergency sheltering is a temporary source of safety and support for people affected by disasters. People access emergency sheltering just prior to or soon after a disaster; therefore they are often scared, stressed, and/or experiencing loss/grief. The gathering of people in shelters also increases several environmental health risks. Therefore ensuring emergency shelters contain adequate facilities (permanent or temporary) and are well managed is essential in providing immediate support to disaster-affected communities and providing a level of assurance that the agencies involved are capable of supporting them through the recovery process. This paper will be presented by representatives of Australian Red Cross and Environmental Health Australia (Queensland), which both have an interest in emergency sheltering in Queensland. The paper will cover the development, content and application of the ‘Preferred Sheltering Practices for Emergency Sheltering in Australia’ and the roles of various organisations in relation to emergency sheltering. The importance of or- ganisational collaboration will also be discussed, with a focus on the experience of the two organisations fol- lowing the 2011 floods in Queensland and how they are collaborating to improve future operations in evacu- ation centres, which are a common form of emergency sheltering in Queensland. The organisations are con- tinuing to work together with the ultimate goal of improving services to disaster-affected communities and supporting such communities to start the recovery process.
Resumo:
Purpose The purpose of this paper is to provide a case study of two organisations working in evacuation centres which overcame challenges to develop a constructive relationship, resulting in improved outcomes for disaster-affected people. A wide range of services for disaster-affected communities are provided as part of emergency sheltering. Collaboration between agencies providing services is essential, but sometimes challenging. Design/methodology/approach A wide range of services for disaster-affected communities are provided as part of emergency sheltering. Collaboration between agencies providing services is essential, but sometimes challenging. The purpose of this paper is to provide a case study of two organisations working in evacuation centres which overcame challenges to develop a constructive relationship, resulting in improved outcomes for disaster-affected people. Findings The Preferred Sheltering Practices provides an ongoing anchor for Australian Red Cross and Environmental Health Australia (EHA) (Queensland) Inc.’s relationship and has led to other tangible benefits such as involvement in each other’s events and trainings. The relationship has become embedded in each organisation’s day-to-day business ensuring the relationship’s sustainability beyond individual staff movements. Originality/value This case study provides an example of how collaboration can be achieved between two organisations with seemingly different mandates to improve the response for disaster-affected communities.