29 resultados para Evacuation
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Flash flood disasters happen suddenly. The Toowoomba Lockyer Valley flash flood in January 2011 was not forecast by the Bureau of Meteorology until after it had occurred. Domestic and wild animals gave the first warning of the disaster in the days leading up to the event and large animals gave warnings on the morning of the disaster. Twenty-three people, including 5 children in the disaster zone died. More than 500 people were listed as missing. Some of those who died, perished because they stayed in the disaster zone to look after their animals while other members of their family escaped to safety. Some people who were in danger refused to be rescued because they could not take their pets with them. During a year spent recording accounts of the survivors of the disaster, animals were often mentioned by survivors. Despite the obvious perils, people risked their lives to save their animals; people saw animals try to save each other; animals rescued people; people rescued animals; animals survived where people died; animals were used to find human victims in the weeks after the disaster; and animals died. The stories of the flood present challenges for pet owners, farmers, counter disaster planners, weather forecasters and emergency responders in preparing for disasters, responding to them and recovering after them.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.
Resumo:
This thesis investigates the influence of passenger group dynamics on passengers' behaviour in an international airport. A simulation model is built to analyse passengers' behaviour during airport departure processes and during an emergency event. Results from the model showed that passengers' group dynamics have significant influences on the performance and utilisation of airport services. The agent-based model also provides a convenient way to investigate the effectiveness of space design and service allocations, which may contribute to the enhancement of passenger airport experiences.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
Early on Christmas morning 1974, tropical cyclone Tracy devastated the city of Darwin leaving only 6 per cent of the city’s housing habitable and instigating the evacuation of 75 per cent of its population. The systematic failure of so much of Darwin’s building stock led to a humanitarian disaster that proved the impetus for an upheaval of building regulatory and construction practices throughout Australia. Indeed, some of the most enduring legacies of Tracy have been the engineering and regulatory steps taken to ensure the extent of damage would not be repeated. This chapter explores these steps and highlights lessons that have led to a national building framework and practice at the fore of wind-resistant design internationally.
Resumo:
Bushfires are regular occurrences in the Australian landscape which can, under adverse weather conditions, give rise to losses of life, property, infrastructure, environmental and cultural values. Where property loss is involved, historical surveys of house losses have focussed on ember, radiant heat and flame contact as key bushfire attack mechanisms. Although often noted, little work has been done to quantify the impact of fire generated or fire enhanced wind and pyro-convective events on house loss and to improve construction practice within Australia. It is well known that strong winds are always associated with bushfire events. It is less well known, although increasingly shown through anecdotal evidence, that bushfires are not a passive companion of wind, but indeed they interact with winds and can together cause significant damages to exposed buildings and ecological structures. Previous studies have revealed the effects of wind, fire and structure interactions with the result of increased pressure coefficient distributions on the windward side of a building downstream of a fire front. This paper presents a further analysis of the result in relations to the relevant standards and fire weather conditions. A review of wind code and bushfire code was conducted. Based on the result of the current study, the authors believe it is necessary to consider wind as an attack mechanism in bushfire events. The results of the study will also have implications on bushfire emergency management, design of emergency shelters, perception of danger, emergency evacuation and on risk assessment.
Resumo:
One hundred and seven children with faecal incontinence were evaluated and managed over a 3 year period by a multidisciplinary team. After initial clinical assessment, evaluation of defaecatory mechanisms (using a balloon model) and assessment of personal-social development and self-concept were undertaken. Management was based on initial bowel evacuation, short-term laxatives, and habit training involving systematic use of positive reinforcement; 69 children received biofeedback conditioning. Idiopathic megacolon with constipation and soiling was the most common finding (98 cases). Other diagnoses included previously undiagnosed neurogenic bowel (three cases), post-surgical anal anomalies (four cases), and psychogenic encopresis (two cases). Idiopathic megacolon was characterized by decreased rectal sensation, increased threshold for external sphincter relaxation and an inability to evacuate. Faecal incontinence was associated with an undesirably low social self-concept (70% of the 40 evaluated), but was not related to a delay in development (mean general developmental quotient = 105 ± 8, for the 35 tested). Family psychopathology warranting referral for family therapy was found in 14 children (13%). The management programme yielded a short-term (3 months) cure rate of 68% and a long-term (12 months) cure rate of 90%, with 10% having continued soiling which varied from occasional to several incidents/week. No significant improvement in self-concept was observed overall, although marked improvements were observed in some children. We conclude that disordered defaecatory dynamics are a major determinant of faecal incontinence in children. Undesirably low social self-concepts but normal developmental ability accompany this condition. Management is facilitated by a multidisciplinary approach, acknowledging the role of both behavioural and physiological components of the problem. This approach is effective in eradicating soiling in the majority of cases, comparing favourably with other published data.
Resumo:
Introduction: Decompressive hemicraniectomy, clot evacuation, and aneurysmal interventions are considered aggressive surgical therapeutic options for treatment of massive cerebral artery infarction (MCA), intracerebral hemorrhage (ICH), and severe subarachnoid hemorrhage (SAH) respectively. Although these procedures are saving lives, little is actually known about the impact on outcomes other than short-term survival and functional status. The purpose of this study was to gain a better understanding of personal and social consequences of surviving these aggressive surgical interventions in order to aid acute care clinicians in helping family members make difficult decisions about undertaking such interventions. Methods: An exploratory mixed method study using a convergent parallel design was conducted to examine functional recovery (NIHSS, mRS & BI), cognitive status (Montreal Cognitive Assessment Scale, MoCA), quality of life (Euroqol 5-D), and caregiver outcomes (Bakas Caregiver Outcome Scale, BCOS) in a cohort of patients and families who had undergone aggressive surgical intervention for severe stroke between the years 2000–2007. Data were analyzed using descriptive statistics, univariate and multivariate analysis of variance, and multivariate logistic regression. Content analysis was used to analyze the qualitative interviews conducted with stroke survivors and family members. Results: Twenty-seven patients and 13 spouses participated in this study. Based on patient MOCA scores, overall cognitive status was 25.18 (range 23.4-26.9); current functional outcomes scores: NIHSS 2.22, mRS 1.74, and BI 88.5. EQ-5D scores revealed no significant differences between patients and caregivers (p=0.585) and caregiver outcomes revealed no significant differences between male/female caregivers or patient diagnostic group (MCA, SAH, ICH; p=""0.103).<"/span><"/span> Discussion: Overall, patients and families were satisfied with quality of life and decisions made at the time of the initial stroke. There was consensus among study participants that formal community-based support (e.g., handibus, caregiving relief, rehabilitation assessments) should be continued for extended periods (e.g., years) post-stroke. Ongoing contact with health care professionals is valuable to help them navigate in the community as needs change over time.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
Background The past decade has seen a rapid change in the climate system with an increased risk of extreme weather events. On and following the 3rd of January 2013, Tasmania experienced three catastrophic bushfires, which led to the evacuation of several communities, the loss of many properties, and a financial cost of approximately AUD$80 million. Objective To explore the impacts of the 2012/2013 Tasmanian bushfires on community pharmacies. Method Qualitative research methods were undertaken, employing semi-structured telephone interviews with a purposive sample of seven Tasmanian pharmacists. The interviews were recorded and transcribed, and two different methods were used to analyse the text. The first method utilised Leximancer® text analytics software to provide a birds-eye view of the conceptual structure of the text. The second method involved manual, open and axial coding, conducted independently by the two researchers for inter-rater reliability, to identify key themes in the discourse. Results Two main themes were identified - ‘people’ and ‘supply’ - from which six key concepts were derived. The six concepts were ‘patients’, ‘pharmacists’, ‘local doctor’, ‘pharmacy operations’, ‘disaster management planning’, and ‘emergency supply regulation’. Conclusion This study identified challenges faced by community pharmacists during Tasmanian bushfires. Interviewees highlighted the need for both the Tasmanian State Government and the Australian Federal Government to recognise the important primary care role that community pharmacists play during natural disasters, and therefore involve pharmacists in disaster management planning. They called for greater support and guidance for community pharmacists from regulatory and other government bodies during these events. Their comments highlighted the need for a review of Tasmania’s 3-day emergency supply regulation that allows pharmacists to provide a three-day supply of a patient’s medication without a doctor’s prescription in an emergency situation.