192 resultados para Electricity market prices forecast
Resumo:
Much research has investigated the differences between option implied volatilities and econometric model-based forecasts. Implied volatility is a market determined forecast, in contrast to model-based forecasts that employ some degree of smoothing of past volatility to generate forecasts. Implied volatility has the potential to reflect information that a model-based forecast could not. This paper considers two issues relating to the informational content of the S&P 500 VIX implied volatility index. First, whether it subsumes information on how historical jump activity contributed to the price volatility, followed by whether the VIX reflects any incremental information pertaining to future jump activity relative to model-based forecasts. It is found that the VIX index both subsumes information relating to past jump contributions to total volatility and reflects incremental information pertaining to future jump activity. This issue has not been examined previously and expands our understanding of how option markets form their volatility forecasts.
Resumo:
This paper discusses the content, origin and development of Tendering Theory as a theory of price determination. It demonstrates how tendering theory determines market prices and how it is different from game and decision theories, and that in the tendering process, with non-cooperative, simultaneous, single sealed bids with individual private valuations, extensive public information, a large number of bidders and a long sequence of tendering occasions, there develops a competitive equilibrium. The development of a competitive equilibrium means that the concept of the tender as the sum of a valuation and a strategy, which is at the core of tendering theory, cannot be supported and that there are serious empirical, theoretical and methodological inconsistencies in the theory.
Resumo:
Depleting fossil fuel resources and increased accumulation of greenhouse gas emissions are increasingly making electrical vehicles (EV) attractive option for the transportation sector. However uncontrolled random charging and discharging of EVs may aggravate the problems of an already stressed system during the peak demand and cause voltage problems during low demand. This paper develops a demand side response scheme for properly integrating EVs in the Electrical Network. The scheme enacted upon information on electricity market conditions regularly released by the Australian Energy Market Operator (AEMO) on the internet. The scheme adopts Internet relays and solid state switches to cycle charging and discharging of EVs. Due to the pending time-of-use and real-price programs, financial benefits will represent driving incentives to consumers to implement the scheme. A wide-scale dissemination of the scheme is expected to mitigate excessive peaks on the electrical network with all associated technical, economic and social benefits.
Resumo:
With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
This paper reports on the outcomes of an ICT enabled social sustainability project “Green Lanka1” trialled in the Wilgamuwa village, which is situated in the Dambulla district of Sri Lanka. The main goals of the project were focused towards the provision of information about market prices, transportation options, agricultural decision support and modern agriculture practices of the farmer communities to improve their livelihood with the effective use of technologies. The project used Web and Mobile (SMS) enabled systems. The Green Lanka project was sponsored by the Information Communication Technology Agency (ICTA) of Sri Lanka under the Institutional Capacity Building Programme (ICBP) grant scheme which was sponsored by the World Bank. Six hundred families in Wilgamuwa village participated in the project activities. The project was designed, executed and studied through an Action Research approach. The lessons learned through the project activities provide an important understanding of the complex interaction between different stakeholders in the process of implementation of ICT enabled solutions within digitally divided societies. The paper analyses the processes used to reduce the resistance to change and improved involvement of farmer communities in ICT enabled projects. It also analyses the interaction between stakeholders involved in design and implementation of the project activities to improve the chances of project success.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
In the electricity market environment, coordination of system reliability and economics of a power system is of great significance in determining the available transfer capability (ATC). In addition, the risks associated with uncertainties should be properly addressed in the ATC determination process for risk-benefit maximization. Against this background, it is necessary that the ATC be optimally allocated and utilized within relative security constraints. First of all, the non-sequential Monte Carlo stimulation is employed to derive the probability density distribution of ATC of designated areas incorporating uncertainty factors. Second, on the basis of that, a multi-objective optimization model is formulated to determine the multi-area ATC so as to maximize the risk-benefits. Then, the solution to the developed model is achieved by the fast non-dominated sorting (NSGA-II) algorithm, which could decrease the risk caused by uncertainties while coordinating the ATCs of different areas. Finally, the IEEE 118-bus test system is served for demonstrating the essential features of the developed model and employed algorithm.
Resumo:
This study explores the accuracy and valuation implications of the application of a comprehensive list of equity multiples in the takeover context. Motivating the study is the prevalent use of equity multiples in practice, the observed long-run underperformance of acquirers following takeovers, and the scarcity of multiplesbased research in the merger and acquisition setting. In exploring the application of equity multiples in this context three research questions are addressed: (1) how accurate are equity multiples (RQ1); which equity multiples are more accurate in valuing the firm (RQ2); and which equity multiples are associated with greater misvaluation of the firm (RQ3). Following a comprehensive review of the extant multiples-based literature it is hypothesised that the accuracy of multiples in estimating stock market prices in the takeover context will rank as follows (from best to worst): (1) forecasted earnings multiples, (2) multiples closer to bottom line earnings, (3) multiples based on Net Cash Flow from Operations (NCFO) and trading revenue. The relative inaccuracies in multiples are expected to flow through to equity misvaluation (as measured by the ratio of estimated market capitalisation to residual income value, or P/V). Accordingly, it is hypothesised that greater overvaluation will be exhibited for multiples based on Trading Revenue, NCFO, Book Value (BV) and earnings before interest, tax, depreciation and amortisation (EBITDA) versus multiples based on bottom line earnings; and that multiples based on Intrinsic Value will display the least overvaluation. The hypotheses are tested using a sample of 147 acquirers and 129 targets involved in Australian takeover transactions announced between 1990 and 2005. The results show that first, the majority of computed multiples examined exhibit valuation errors within 30 percent of stock market values. Second, and consistent with expectations, the results provide support for the superiority of multiples based on forecasted earnings in valuing targets and acquirers engaged in takeover transactions. Although a gradual improvement in estimating stock market values is not entirely evident when moving down the Income Statement, historical earnings multiples perform better than multiples based on Trading Revenue or NCFO. Third, while multiples based on forecasted earnings have the highest valuation accuracy they, along with Trading Revenue multiples for targets, produce the most overvalued valuations for acquirers and targets. Consistent with predictions, greater overvaluation is exhibited for multiples based on Trading Revenue for targets, and NCFO and EBITDA for both acquirers and targets. Finally, as expected, multiples based Intrinsic Value (along with BV) are associated with the least overvaluation. Given the widespread usage of valuation multiples in takeover contexts these findings offer a unique insight into their relative effectiveness. Importantly, the findings add to the growing body of valuation accuracy literature, especially within Australia, and should assist market participants to better understand the relative accuracy and misvaluation consequences of various equity multiples used in takeover documentation and assist them in subsequent investment decision making.
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
Nigerian electricity market is characterized by inadequate electricity generation framework, compounded by lack of timely routine maintenances. This results in significant deterioration in plant electricity output. This study analyzes the productivity changes in the Nigerian power sector. Productivity increased on average in the power sector by the adoption of new technologies from best-practice power plants. The assumption of Hicks neutral technological change is found not to be suitable for the Nigerian power sector. This study finds that the plants are not using their capacity meaningfully, instead, there is a tendency to use labor.
Resumo:
The increasing integration of Renewable Energy Resources (RER) and the role of Electric Energy Storage (EES) in distribution systems has created interest in using energy management strategies. EES has become a suitable resource to manage energy consumption and generation in smart grid. Optimize scheduling of EES can also maximize retailer’s profit by introducing energy time-shift opportunities. This paper proposes a new strategy for scheduling EES in order to reduce the impact of electricity market price and load uncertainty on retailers’ profit. The proposed strategy optimizes the cost of purchasing energy with the objective of minimizing surplus energy cost in hedging contract. A case study is provided to demonstrate the impact of the proposed strategy on retailers’ financial benefit.
Resumo:
uring periods of market stress, electricity prices can rise dramatically. Electricity retailers cannot pass these extreme prices on to customers because of retail price regulation. Improved prediction of these price spikes therefore is important for risk management. This paper builds a time-varying-probability Markov-switching model of Queensland electricity prices, aimed particularly at forecasting price spikes. Variables capturing demand and weather patterns are used to drive the transition probabilities. Unlike traditional Markov-switching models that assume normality of the prices in each state, the model presented here uses a generalised beta distribution to allow for the skewness in the distribution of electricity prices during high-price episodes.
Resumo:
This paper examines the relationship between the volatility implied in option prices and the subsequently realized volatility by using the S&P/ASX 200 index options (XJO) traded on the Australian Stock Exchange (ASX) during a period of 5 years. Unlike stock index options such as the S&P 100 index options in the US market, the S&P/ASX 200 index options are traded infrequently and in low volumes, and have a long maturity cycle. Thus an errors-in-variables problem for measurement of implied volatility is more likely to exist. After accounting for this problem by instrumental variable method, it is found that both call and put implied volatilities are superior to historical volatility in forecasting future realized volatility. Moreover, implied call volatility is nearly an unbiased forecast of future volatility.