69 resultados para EXCITED HYPERONS
Resumo:
I am sure you’ve heard it too: Green is the new Black. While this was true back in the days when Henry Ford introduced process standardization with his assembly line for the Ford Model T (over 15 million of these were sold!), Green is also the color of choice for many business organizations, private and public. I am not talking about the actual color of their business shirts or their logo 2.0.; I am referring to the eco-aware movement that has pushed sustainability into the top ten list of business buzz-words. What used to be a boutique market for tourism and political activists has become the biggest business revolution since the e-commerce boom. Public and private organizations alike push towards “sustainable” solutions and practices. That push is partly triggered by the immense reputational gains associated with branding your organization as “green”, and partly by emerging societal, legal and constitutional regulations that force organizations to become more ecologically aware and sustainable. But the boom goes beyond organizational reality. Even in academia, sustainability has become a research “fashion wave” (see [1] if you are interested in research fashion waves) similar to the hype around Neuroscience that our colleagues in the natural sciences are witnessing these days. Mind you, I’m a fan. A big fan in fact. As academics, we are constantly searching for problem areas that are characterized by an opportunity to do rigorous research (studies that are executed to perfection) on relevant topics (studies that have applied practical value and provide impact to the community). What would be a better playground than exploring the options that Business Process Management provides for creating a sustainable, green future? I’m getting excited just writing about this! So, join me in exploring some of the current thoughts around how BPM can contribute to the sustainability fashion parade and let me introduce you to some of the works that scholars have produced recently in their attempts to identify solutions.
Resumo:
The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.
Resumo:
A series of new spin-labeled porphyrin containing isoindoline nitroxide moieties were synthesized and characterized as potential free radical fluorescence sensors. Fluorescence-suppression was observed in the free-base monoradical porphyrins, whilst the free-base biradical porphyrins exhibited highly suppressed fluorescence about three times greater than the monoradical porphyrins. The observed fluorescence-suppression was attributed to enhanced intersystem crossing resulting from electronexchange between the doublet nitroxide and the excited porphyrin fluorophore. Notably, fluorescencesuppression was not as strong in the related metalated porphyrins, possibly due to insufficient spin coupling between the nitroxide and the porphyrin. Continuous wave EPR spectroscopy of the diradical porphyrins in fluid solution suggests that the nitroxyl-nitroxyl interspin distance is long enough and tumbling is fast enough not to detect dipolar coupling.
Resumo:
Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing equation with a cubic stiffness are used to isolate the coupling between the triads and quartets, respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscillator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the number of excited Fourier components increases, eventually leading to broad-band power spectra for chaos. The corresponding higher-order spectra indicate that although some individual nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interacting Fourier modes increases. Trispectra indicate that the cubic interactions gradually evolve from encompassing a few quartets of Fourier components for period-1 motion to encompassing many quartets for chaos. For chaos, all the components within the energetic part of the power spectrum are cubically (but not quadratically) coupled to each other.
Resumo:
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Background Excessive speed contributes to the incidence and severity of road crashes. The Theory of Planned Behaviour (TPB) has successfully explained variance in speeding intentions and behaviour. However, studies have shown that more than 40% of the variance in outcome measures of speeding remains unexplained, thus, suggesting additional constructs may help to enhance the TPB’s predictive power. Therefore, this study examined mindfulness; a promising construct which has not yet been tested as an additional TPB predictor. Aims The aims of this study were to explore drivers’ beliefs about speeding in school zones using the extended TPB as a framework and to examine the effect that mindfulness had on driver speeding behaviour in school zones. Methods Australian drivers (N = 17) participated in one of four focus group discussions. The overall sample was comprised of five males and twelve females who were aged between 17 to56 years. All participants were recruited via purposive sampling among 1st year psychology students at a large South East Queensland University. The group discussions took approximately one hour and were guided by a structured interview schedule which sought to elicit drivers’ beliefs, thoughts and opinions on speeding in school zones and the factors which motivate such behaviour. Results Overall, thematic analysis revealed some similar issues emerged across the groups. . In particular and perhaps somewhat unsurprisingly, given public concerns regarding the want to ensure the safety of school children, there was much agreement that speeding in school zones was dangerous and unacceptable. Somewhat paradoxically however, some participants also agreed that they had unintentionally or mindlessly sped in school zones. There were several factors that drivers believed influenced their speeding in school zones including their current mood (e.g., if in a bad mood, anxious, or excited they may be more likely to drive without awareness of, and being attentive to, their driving environment) and the extent to which they were familiar with the environment (i.e., more familiar contexts, more likely to drive mindlessly). Thus, although drivers expressed a belief that speeding in school zones was dangerous and acceptable, the extent to which a driver is mindful does influence whether or not a driver may actually engage in speeding in this context. Discussion and conclusions This study highlights the potential role of mindfulness in helping to explain speeding behaviour in school zones. Mindless drivers may speed unintentionally and while unintentional still be endangering the safety and lives of school children. The findings of this research suggest that unintentional speeding, especially in school zones, may be reduced by countermeasures which heighten the extent to which drivers are mindful of approaching and/or driving through a school zone, such as street markings and engineering measures (e.g.,flashing lights and speed bumps).
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
The change from nursing student to Registered Nurse (RNs) is both a desirable and anticipated event for New Graduate Nurses (NGNs). Having completed their formal education, most NGNs approach the threshold of their professional career with mixed emotions. While excited about the future and eagerly awaiting the commencement of employment, many are aware that this change also signifies a time of personal upheaval, professional insecurity and further personal learning. In the nursing professions’ enthusiasm to facilitate a smooth passage for NGNs a vast literature now addresses preparation-for-practice degrees, as well as the perceived workplace deficits and support needs of NGNs. However, the importance this change from working as a student to working as a NGN is not well conceptualised, theorised or understood as this largely instrumental literature essentially reduces the problematisation of the NGN transition experience to the problematisation of the individual by identifying NGNs as ‘the’ problem. Subsequently it fails to expose or challenge the normative assumptions underpinning processes that have formerly been considered solutions, or, the impact of such processes in a workplace that frames itself as “supportive”. Conspicuously absent is an exploration of how the NGN role is performed by former students, now beginning RNs undergoing the very personal transition of “becoming registered nurses”. Using Goffman’s (1956) theorisation of performance in everyday life exploring how process and meaning in mundane interactions present themselves in the “regular” lives of people at large, and Margaret Archer’s (2000) work emphasising the significance of the inner dialogue for managing the emotions that emerge out of situations that confront us, this paper draws upon data collected during a study of NGNs’ experience of transition to practice (Malouf 2010). It focuses on an emergent understanding of the need to differentiate the performance of ‘student’ from that of ‘NGN’ role. Further, it explores how these roles have become conflated into a conceptual continuum and viewed as a slide from student to NGN performance, rather than a significant moment of change involving roles that need to be distinctly defined as a necessary precursor to enhancing and supporting the professional and personal development of beginning practitioners.
Resumo:
Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.
Resumo:
We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.
Resumo:
Density functional theory (DFT) calculations have been carried out to explore the catalytic activation of C–H bonds in methane by the iron atom, Fe, and the iron dimer, Fe2. For methane activation on an Fe atom, the calculations suggest that the activation of the first C–H bond is mediated via the triplet excited-state potential energy surface (PES), with initial excitation of Fe to the triplet state being necessary for the reaction to be energetically feasible. Compared with the breaking of the first C–H bond, the cleavage of the second C–H bond is predicted to involve a significantly higher barrier, which could explain experimental observations of the HFeCH3 complex rather than CH2FeH2 in the activation of methane by an Fe atom. For methane activation on an iron dimer, the cleavage of the first C–H bond is quite facile with a barrier only 11.2, 15.8 and 8.4 kcal/mol on the septet state energy surface at the B3LYP/6-311+G(2df,2dp), BPW91/6-311+G(2df,2dp) and M06/B3LYP level, respectively. Cleavage of the second C–H bond from HFe2CH3 involves a barrier calculated respectively as 18.0, 10.7 and 12.4 kcal/mol at the three levels. The results suggest that the elimination of hydrogen from the dihydrogen complex is a rate-determining step. Overall, our results indicate that the iron dimer Fe2 has a stronger catalytic effect on the activation of methane than the iron atom.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
Orchids: My Intersex Adventure is a multi-award winning autobiographical documentary film. The film follows documentary filmmaker, Phoebe Hart, as she comes clean on her journey of self-discovery to embrace her future and reconcile the past shame and family secrecy surrounding her intersex condition. Despite her mother’s outright refusal to be in the film, Phoebe decides she must push on with her quest to resolve her life story and connect with other intersex people on camera. With the help of her sister Bonnie and support from her partner James, she hits the open road and reflects on her youth. Phoebe’s happy and carefree childhood came to an abrupt end at puberty when she was told she would never menstruate nor have children. But the reasons why were never discussed and the topic was taboo. At the age of 17, Phoebe’s mother felt she was old enough to understand the true nature of her body and the family secret was finally revealed. Phoebe then faced an orchidectomy, invasive surgery to remove her undescended testes, the emotional scars of which are still raw today. Phoebe’s road trip around Australia exposes her to the stories of other intersex people and holds a mirror to her own experience. She learns valuable lessons in resilience and healing but also sees the pervasive impact her condition has on all her relationships. At home, Phoebe and James want to start a family but dealing with infertility and the stress of the adoption process puts pressure on their marriage. Phoebe also starts to understand the difficult decisions her parents faced and is excited but apprehensive when they eventually agree to be interviewed. Will talking openly with her mother give Phoebe the answers she has been looking for? The film was produced and directed by Phoebe Hart and commissioned by the Australian Broadcasting Commission. The film premiered at the Brisbane International Film Festival in 2010 where it was voted the number one film of the festival by audiences. Orchids was broadcast on ABC1 in Australia in 2012, appeared in more than 50 film festivals internationally and has since been broadcast nationally in Switzerland, Sweden, Israel, Spain, France, Russia, Poland, Germany and the USA.