409 resultados para Dunkl-Bessel Transform
Resumo:
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.
Resumo:
In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following behavior (CF). LCMs were predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car following behavior: a deceleration wave of an oscillation affects a timid driver (with larger response time and minimum spacing) to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework of Newell’s CF is able to describe the regressive effects with two additional parameters with reasonable accuracy, as verified using vehicle trajectory data.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure project quality and reliability. This paper proposes the use of the Log-Gabor filter bank, Discrete Wavelet Transform and Discrete Cosine Transform for feature extraction of solder joint images on Printed Circuit Boards (PCBs). A distance based on the Mahalanobis Cosine metric is also presented for classification of five different types of solder joints. From the experimental results, this methodology achieved high accuracy and a well generalised performance. This can be an effective method to reduce cost and improve quality in the production of PCBs in the manufacturing industry.
Resumo:
Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.
Resumo:
The rank transform is one non-parametric transform which has been applied to the stereo matching problem The advantages of this transform include its invariance to radio metric distortion and its amenability to hardware implementation. This paper describes the derivation of the rank constraint for matching using the rank transform Previous work has shown that this constraint was capable of resolving ambiguous matches thereby improving match reliability A new matching algorithm incorporating this constraint was also proposed. This paper extends on this previous work by proposing a matching algorithm which uses a dimensional match surface in which the match score is computed for every possible template and match window combination. The principal advantage of this algorithm is that the use of the match surface enforces the left�right consistency and uniqueness constraints thus improving the algorithms ability to remove invalid matches Experimental results for a number of test stereo pairs show that the new algorithm is capable of identifying and removing a large number of in incorrect matches particularly in the case of occlusions
Resumo:
The rank transform is a non-parametric technique which has been recently proposed for the stereo matching problem. The motivation behind its application to the matching problem is its invariance to certain types of image distortion and noise, as well as its amenability to real-time implementation. This paper derives an analytic expression for the process of matching using the rank transform, and then goes on to derive one constraint which must be satisfied for a correct match. This has been dubbed the rank order constraint or simply the rank constraint. Experimental work has shown that this constraint is capable of resolving ambiguous matches, thereby improving matching reliability. This constraint was incorporated into a new algorithm for matching using the rank transform. This modified algorithm resulted in an increased proportion of correct matches, for all test imagery used.
Resumo:
A fundamental problem faced by stereo matching algorithms is the matching or correspondence problem. A wide range of algorithms have been proposed for the correspondence problem. For all matching algorithms, it would be useful to be able to compute a measure of the probability of correctness, or reliability of a match. This paper focuses in particular on one class for matching algorithms, which are based on the rank transform. The interest in these algorithms for stereo matching stems from their invariance to radiometric distortion, and their amenability to fast hardware implementation. This work differs from previous work in that it derives, from first principles, an expression for the probability of a correct match. This method was based on an enumeration of all possible symbols for matching. The theoretical results for disparity error prediction, obtained using this method, were found to agree well with experimental results. However, disadvantages of the technique developed in this chapter are that it is not easily applicable to real images, and also that it is too computationally expensive for practical window sizes. Nevertheless, the exercise provides an interesting and novel analysis of match reliability.
Resumo:
In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.
Resumo:
FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.
Resumo:
Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.