157 resultados para Distributed Lag Non-linear Models
Resumo:
Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.
Resumo:
Background Children are particularly vulnerable to the effects of extreme temperatures. Objective To examine the relationship between extreme temperatures and paediatric emergency department admissions (EDAs) in Brisbane, Australia, during 2003–2009. Methods A quasi-Poisson generalised linear model combined with a distributed lag non-linear model was used to examine the relationships between extreme temperatures and age-, gender- and cause-specific paediatric EDAs, while controlling for air pollution, relative humidity, day of the week, influenza epidemics, public holiday, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. Results There were 131 249 EDAs among children during the study period. Both high (RR=1.27; 95% CI 1.12 to 1.44) and low (RR=1.81; 95% CI 1.66 to 1.97) temperatures were significantly associated with an increase in paediatric EDAs in Brisbane. Male children were more vulnerable to temperature effects. Children aged 0–4 years were more vulnerable to heat effects and children aged 10–14 years were more sensitive to both hot and cold effects. High temperatures had a significant impact on several paediatric diseases, including intestinal infectious diseases, respiratory diseases, endocrine, nutritional and metabolic diseases, nervous system diseases and chronic lower respiratory diseases. Low temperatures were significantly associated with intestinal infectious diseases, respiratory diseases and endocrine, nutritional and metabolic diseases. An added effect of heat waves on childhood chronic lower respiratory diseases was seen, but no added effect of cold spells was found. Conclusions As climate change continues, children are at particular risk of a variety of diseases which might be triggered by extremely high temperatures. This study suggests that preventing the effects of extreme temperature on children with respiratory diseases might reduce the number of EDAs.
Resumo:
The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.
Resumo:
A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood diarrhea in Brisbane from 2001 to 2010. Residual of the model was checked to examine whether there was an added effect due to heat waves. The change over time in temperature-diarrhea relation was also assessed. Both low and high temperatures had significant impact on childhood diarrhea. Heat waves had an added effect on childhood diarrhea, and this effect increased with intensity and duration of heat waves. There was a decreasing trend in the main effect of heat on childhood diarrhea in Brisbane across the study period. Brisbane children appeared to have gradually adapted to mild heat, but they are still very sensitive to persistent extreme heat. Development of future heat alert systems should take the change in temperature-diarrhea relation over time into account.
Resumo:
This thesis is a population-based ecological study designed to investigate the issue of mortality displacement (or "harvesting" effect) in the assessment of temperature-related deaths in Brisbane, Australia. It examines the temperature impacts on mortality, and assesses the harvesting effects on the temperature–related deaths. This study contributes to the knowledge base of understanding the temperature-mortality relationship and assists in formulating and evaluating public health intervention strategies within the context of climate change.
Resumo:
Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.
Resumo:
This paper develops a general theory of validation gating for non-linear non-Gaussian mod- els. Validation gates are used in target tracking to cull very unlikely measurement-to-track associa- tions, before remaining association ambiguities are handled by a more comprehensive (and expensive) data association scheme. The essential property of a gate is to accept a high percentage of correct associ- ations, thus maximising track accuracy, but provide a su±ciently tight bound to minimise the number of ambiguous associations. For linear Gaussian systems, the ellipsoidal vali- dation gate is standard, and possesses the statistical property whereby a given threshold will accept a cer- tain percentage of true associations. This property does not hold for non-linear non-Gaussian models. As a system departs from linear-Gaussian, the ellip- soid gate tends to reject a higher than expected pro- portion of correct associations and permit an excess of false ones. In this paper, the concept of the ellip- soidal gate is extended to permit correct statistics for the non-linear non-Gaussian case. The new gate is demonstrated by a bearing-only tracking example.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
This paper presents an approach, based on Lean production philosophy, for rationalising the processes involved in the production of specification documents for construction projects. Current construction literature erroneously depicts the process for the creation of construction specifications as a linear one. This traditional understanding of the specification process often culminates in process-wastes. On the contrary, the evidence suggests that though generalised, the activities involved in producing specification documents are nonlinear. Drawing on the outcome of participant observation, this paper presents an optimised approach for representing construction specifications. Consequently, the actors typically involved in producing specification documents are identified, the processes suitable for automation are highlighted and the central role of tacit knowledge is integrated into a conceptual template of construction specifications. By applying the transformation, flow, value (TFV) theory of Lean production the paper argues that value creation can be realised by eliminating the wastes associated with the traditional preparation of specification documents with a view to integrating specifications in digital models such as Building Information Models (BIM). Therefore, the paper presents an approach for rationalising the TFV theory as a method for optimising current approaches for generating construction specifications based on a revised specification writing model.