24 resultados para Daylighting
Resumo:
The international focus on embracing daylighting for energy efficient lighting purposes and the corporate sector’s indulgence in the perception of workplace and work practice “transparency” has spurned an increase in highly glazed commercial buildings. This in turn has renewed issues of visual comfort and daylight-derived glare for occupants. In order to ascertain evidence, or predict risk, of these events; appraisals of these complex visual environments require detailed information on the luminances present in an occupant’s field of view. Conventional luminance meters are an expensive and time consuming method of achieving these results. To create a luminance map of an occupant’s visual field using such a meter requires too many individual measurements to be a practical measurement technique. The application of digital cameras as luminance measurement devices has solved this problem. With high dynamic range imaging, a single digital image can be created to provide luminances on a pixel-by-pixel level within the broad field of view afforded by a fish-eye lens: virtually replicating an occupant’s visual field and providing rapid yet detailed luminance information for the entire scene. With proper calibration, relatively inexpensive digital cameras can be successfully applied to the task of luminance measurements, placing them in the realm of tools that any lighting professional should own. This paper discusses how a digital camera can become a luminance measurement device and then presents an analysis of results obtained from post occupancy measurements from building assessments conducted by the Mobile Architecture Built Environment Laboratory (MABEL) project. This discussion leads to the important realisation that the placement of such tools in the hands of lighting professionals internationally will provide new opportunities for the lighting community in terms of research on critical issues in lighting such as daylight glare and visual quality and comfort.
Resumo:
In the face of increasing concern over global warming and climate change, interest in the utilizzation of solar energy for building operations is rapidly growing. In this entry, the importance of using renewable energy in building operations is first introduced. This is followed by a general overview on the energy from the sun and the methods to utilize solar energy. Possible applications of solar energy in building operations are then discussed, which include the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling, and building-integrated photovoltaics.
Resumo:
In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.
Resumo:
High Dynamic Range (HDR) imaging was used to collect luminance information at workstations in 2 open-plan office buildings in Queensland, Australia: one lit by skylights, vertical windows and electric light, and another by skylights and electric light. This paper compares illuminance and luminance data collected in these offices with occupant feedback to evaluate these open-plan environments based on available and emerging metrics for visual comfort and glare. This study highlights issues of daylighting quality and measurement specific to open plan spaces. The results demonstrate that overhead glare is a serious threat to user acceptance of skylights, and that electric and daylight integration and controls have a major impact on the perception of daylighting quality. With regards to measurement of visual comfort it was found that the Daylight Glare Probability (DGP) gave poor agreement with occupant reports of discomfort glare in open-plan spaces with skylights, and the CIE Glare Index (CGI) gave the best agreement. Horizontal and vertical illuminances gave no indication of visual comfort in these spaces.
Resumo:
Glare indices have yet to be extensively tested in daylit open plan offices, as such there is no effective method to predict discomfort glare within these spaces. This study into discomfort glare in open plan green buildings targeted full-time employees, working under their everyday lighting conditions. Three green buildings in Brisbane were used for data collection, two were Green Star accredited and the other contained innovative daylighting strategies. Data were collected on full-time employees, mostly aged between 30 and 50 years, who broadly reflect the demographics of the wider working population in Australia. It was discovered 36 of the 64 respondents experienced discomfort from both electric and daylight sources at their workspace. The study used a specially tailored post-occupancy evaluation (POE) survey to help assess discomfort glare. Luminance maps extracted from High Dynamic Range (HDR) images were used to capture the luminous environment of the occupants. These were analysed using participant data and the program Evalglare. The physical results indicated no correlation with other developed glare metrics for daylight within these open plan green buildings, including the recently developed Daylight Glare Probability (DGP) Index. The strong influence of vertical illuminance, Ev in the DGP precludes the mostly contrast-based glare from windows observed in this investigation from forming a significant part of this index. Furthermore, critical assessment of the survey techniques used are considered. These will provide insight for further research into discomfort glare in the endeavour to fully develop a suitable glare metric.
Resumo:
This paper examines the feasibility of using vertical light pipes to naturally illuminate the central core of a multilevel building not reached by window light. The challenges addressed were finding a method to extract and distribute equal amounts of light at each level and designing collectors to improve the effectiveness of vertical light pipes in delivering low elevation sunlight to the interior. Extraction was achieved by inserting partially reflecting cones within transparent sections of the pipes at each floor level. Theory was formulated to estimate the partial reflectance necessary to provide equal light extraction at each level. Designs for daylight collectors formed from laser cut panels tilted above the light pipe were developed and the benefits and limitations of static collectors as opposed to collectors that follow the sun azimuth investigated. Performance was assessed with both basic and detailed mathematical simulation and by observations made with a five level model building under clear sky conditions.
Resumo:
This study investigates the implications of the introduction of electric lighting systems, building technologies, and theories of worker efficiency on the deep spatial and environmental transformations that occurred within the corporate workplace during the twentieth century. Examining the shift from daylighting strategies to largely artificially lit workplace environments, this paper argues that electric lighting significantly contributed to the architectural rationalization of both office work and the modern office environment. Contesting the historical and critical marginalization of lighting within the discourse of the modern built environment, this study calls for a reassessment of the role of artificial lighting in the development of the modern corporate workplace. Keywords: daylighting, fluorescent lighting, rationalization, workplace design