315 resultados para Data-driven modelling


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer poses an undeniable burden to the health and wellbeing of the Australian community. In a recent report commissioned by the Australian Institute for Health and Welfare(AIHW, 2010), one in every two Australians on average will be diagnosed with cancer by the age of 85, making cancer the second leading cause of death in 2007, preceded only by cardiovascular disease. Despite modest decreases in standardised combined cancer mortality over the past few decades, in part due to increased funding and access to screening programs, cancer remains a significant economic burden. In 2010, all cancers accounted for an estimated 19% of the country's total burden of disease, equating to approximately $3:8 billion in direct health system costs (Cancer Council Australia, 2011). Furthermore, there remains established socio-economic and other demographic inequalities in cancer incidence and survival, for example, by indigenous status and rurality. Therefore, in the interests of the nation's health and economic management, there is an immediate need to devise data-driven strategies to not only understand the socio-economic drivers of cancer but also facilitate the implementation of cost-effective resource allocation for cancer management...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the QUT Business School (QUTBS)– researchers across economics, finance and accounting depend on data driven research. They analyze historic and global financial data across a range of instruments to understand the relationships and effects between them as they respond to news and events in their region. Scholars and Higher Degree Research Students in turn seek out universities which offer these particular datasets to further their research. This involves downloading and manipulating large datasets, often with a focus on depth of detail, frequency and long tail historical data. This is stock exchange data and has potential commercial value therefore the license for access tends to be very expensive. This poster reports the following findings: •The library has a part to play in freeing up researchers from the burden of negotiating subscriptions, fundraising and managing the legal requirements around license and access. •The role of the library is to communicate the nature and potential of these complex resources across the university to disciplines as diverse as Mathematics, Health, Information Systems and Creative Industries. •Has demonstrated clear concrete support for research by QUT Library and built relationships into faculty. It has made data available to all researchers and attracted new HDRs. The aim is to reach the output threshold of research outputs to submit into FOR Code 1502 (Banking, Finance and Investment) for ERA 2015. •It is difficult to identify what subset of dataset will be obtained given somewhat vague price tiers. •The integrity of data is variable as it is limited by the way it is collected, this occasionally raises issues for researchers(Cook, Campbell, & Kelly, 2012) •Improved library understanding of the content of our products and the nature of financial based research is a necessary part of the service.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Echology: Making Sense of Data initiative seeks to break new ground in arts practice by asking artists to innovate with respect to a) the possible forms of data representation in public art and b) the artist's role in engaging publics on environmental sustainability in new urban developments. Initiated by ANAT and Carbon Arts in 2011, Echology has seen three artists selected by National competition in 2012 for Lend Lease sites across Australia. In 2013 commissioning of one of these works, the Mussel Choir by Natalie Jeremijenko, began in Melbourne's Victoria Harbour development. This emerging practice of data - driven and environmentally engaged public artwork presents multiple challenges to established systems of public arts production and management, at the same time as offering up new avenues for artists to forge new modes of collaboration. The experience of Echology and in particular, the Mussel Choir is examined here to reveal opportunities for expansion of this practice through identification of the factors that lead to a resilient 'ecology of part nership' between stakeholders that include science and technology researchers, education providers, city administrators, and urban developers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since 2006, we have been conducting urban informatics research that we define as “the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” [1]. Various new research initiatives under the label “urban informatics” have been started since then by universities (e.g., NYU’s Center for Urban Science and Progress) and industry (e.g., Arup, McKinsey) worldwide. Yet, many of these new initiatives are limited to what Townsend calls, “data-driven approaches to urban improvement” [2]. One of the key challenges is that any quantity of aggregated data does not easily translate directly into quality insights to better understand cities. In this talk, I will raise questions about the purpose of urban informatics research beyond data, and show examples of media architecture, participatory city making, and citizen activism. I argue for (1) broadening the disciplinary foundations that urban science approaches draw on; (2) maintaining a hybrid perspective that considers both the bird’s eye view as well as the citizen’s view, and; (3) employing design research to not be limited to just understanding, but to bring about actionable knowledge that will drive change for good.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of intervention approaches have been developed to improve work-related driving safety. However, past interventions have been limited in that they have been data-driven, and have not been developed within a theoretical framework. The aim of this study is to present a theory-driven intervention. Based on the methodology developed by Ludwig and Geller (1991), this study evaluates the effectiveness of a participative education intervention on a group of work-related drivers (n = 28; experimental group n = 19, control n = 9). The results support the effectiveness of the intervention in reducing speeding over a six month period, while a non significant increase was found in the control group. The results of this study have important implications for organisations developing theory-driven interventions designed to improve work-related driving behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speaker verification is the process of verifying the identity of a person by analysing their speech. There are several important applications for automatic speaker verification (ASV) technology including suspect identification, tracking terrorists and detecting a person’s presence at a remote location in the surveillance domain, as well as person authentication for phone banking and credit card transactions in the private sector. Telephones and telephony networks provide a natural medium for these applications. The aim of this work is to improve the usefulness of ASV technology for practical applications in the presence of adverse conditions. In a telephony environment, background noise, handset mismatch, channel distortions, room acoustics and restrictions on the available testing and training data are common sources of errors for ASV systems. Two research themes were pursued to overcome these adverse conditions: Modelling mismatch and modelling uncertainty. To directly address the performance degradation incurred through mismatched conditions it was proposed to directly model this mismatch. Feature mapping was evaluated for combating handset mismatch and was extended through the use of a blind clustering algorithm to remove the need for accurate handset labels for the training data. Mismatch modelling was then generalised by explicitly modelling the session conditions as a constrained offset of the speaker model means. This session variability modelling approach enabled the modelling of arbitrary sources of mismatch, including handset type, and halved the error rates in many cases. Methods to model the uncertainty in speaker model estimates and verification scores were developed to address the difficulties of limited training and testing data. The Bayes factor was introduced to account for the uncertainty of the speaker model estimates in testing by applying Bayesian theory to the verification criterion, with improved performance in matched conditions. Modelling the uncertainty in the verification score itself met with significant success. Estimating a confidence interval for the "true" verification score enabled an order of magnitude reduction in the average quantity of speech required to make a confident verification decision based on a threshold. The confidence measures developed in this work may also have significant applications for forensic speaker verification tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study explores through a lifestream narrative how the life experiences of a female primary school principal are organised as practical knowledge, and are used to inform action that is directed towards creating a sustainable school culture. An alternative model of school leadership is presented which describes the thinking and activity of a leader as a process. The process demonstrates how a leader's practical knowledge is dynamic, broadly based in experiential life, and open to change. As such, it is described as a model of sustainable leadership-in-process. The research questions at the heart of this study are: How does a leader construct and organize knowledge in the enactment of the principal ship to deal with the dilemmas and opportunities that arise everyday in school life? And: What does this particular way of organising knowledge look like in the effort to build a sustainable school community? The sustainable leadership-in-process thesis encapsulates new ways of leading primary schools through the principalship. These new ways are described as developing and maintaining the following dimensions of leadership: quality relationships, a collective (shared vision), collaboration and partnerships, and high achieving learning environments. Such dimensions are enacted by the principal through the activities of conversations, performance development, research and data-driven action, promoting innovation, and anticipating and predicting the future. Sustainable leadership-in-process is shared, dynamic, visible and transparent and is conducted through the processes of positioning, defining, organising, experimenting and evaluating in a continuous and iterative way. A rich understanding of the specificity of the life of a female primary school principal was achieved using story telling, story listening and story creation in a collaborative relationship between the researcher and the researched participant. as a means of educational theorising. Analysis and interpretation were undertaken as a recursive process in which the immediate interpretations were shared with the researched participant. The view of theorising adopted in this research is that of theory as hermeneutic; that is, theory is generated out of the stories of experiential life, rather than discovered in the stories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monitoring sites comprising a state of the environment (SOE) network must be carefully selected to ensure that they will be representative of the broader resource. Hierarchical cluster analysis (HCA) is a data-driven technique that can potentially be employed to assess the representativeness of a SOE monitoring network. The objective of this paper is to explore the use of HCA as an approach for assessing the representativeness of the New Zealand National Groundwater Monitoring Programme (NGMP), which is comprised of 110 monitoring sites across the country.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This presentation will deal with the transformations that have occurred in news journalism worldwide in the early 21st century. I will argue that they have been the most significant changes to the profession for 100 years, and the challenges facing the news media industry in responding to them are substantial, as are those facing journalism education. It will develop this argument in relation to the crisis of the newspaper business model, and why social media, blogging and citizen journalism have not filled the gap left by the withdrawal of resources from traditional journalism. It will also draw upon Wikileaks as a case study in debates about computational and data-driven journalism, and whether large-scale "leaks" of electronic documents may be the future of investigative journalism.