32 resultados para DSS
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Information mismatch and overload are two fundamental issues influencing the effectiveness of information filtering systems. Even though both term-based and pattern-based approaches have been proposed to address the issues, neither of these approaches alone can provide a satisfactory decision for determining the relevant information. This paper presents a novel two-stage decision model for solving the issues. The first stage is a novel rough analysis model to address the overload problem. The second stage is a pattern taxonomy mining model to address the mismatch problem. The experimental results on RCV1 and TREC filtering topics show that the proposed model significantly outperforms the state-of-the-art filtering systems.
Resumo:
The widespread development of Decision Support System (DSS) in construction indicate that the evaluation of software become more important than before. However, it is identified that most research in construction discipline did not attempt to assess its usability. Therefore, little is known about the approach on how to properly evaluate a DSS for specific problem. In this paper, we present a practical framework that can be guidance for DSS evaluation. It focuses on how to evaluate software that is dedicatedly designed for consultant selection problem. The framework features two main components i.e. Sub-system Validation and Face Validation. Two case studies of consultant selection at Malaysian Department of Irrigation and Drainage were integrated in this framework. Some inter-disciplinary area such as Software Engineering, Human Computer Interaction (HCI) and Construction Project Management underpinned the discussion of the paper. It is anticipated that this work can foster better DSS development and quality decision making that accurately meet the client’s expectation and needs
Resumo:
In order to make good decisions about the design of information systems, an essential skill is to understand process models of the business domain the system is intended to support. Yet, little knowledge to date has been established about the factors that affect how model users comprehend the content of process models. In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors influence how model viewers comprehend the syntactical information of process models. We then report on a four-part series of experiments, in which we examined these factors. Our results show that additional semantical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehension. Modeling experience further contributes positively to comprehension efficiency, measured as the ratio of correct answers to the time taken to provide answers. We discuss implications for practice and research.
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.
Resumo:
Process-aware information systems, ranging from generic workflow systems to dedicated enterprise information systems, use work-lists to offer so-called work items to users. In real scenarios, users can be confronted with a very large number of work items that stem from multiple cases of different processes. In this jungle of work items, users may find it hard to choose the right item to work on next. The system cannot autonomously decide which is the right work item, since the decision is also dependent on conditions that are somehow outside the system. For instance, what is “best” for an organisation should be mediated with what is “best” for its employees. Current work-list handlers show work items as a simple sorted list and therefore do not provide much decision support for choosing the right work item. Since the work-list handler is the dominant interface between the system and its users, it is worthwhile to provide an intuitive graphical interface that uses contextual information about work items and users to provide suggestions about prioritisation of work items. This paper uses the so-called map metaphor to visualise work items and resources (e.g., users) in a sophisticated manner. Moreover, based on distance notions, the work-list handler can suggest the next work item by considering different perspectives. For example, urgent work items of a type that suits the user may be highlighted. The underlying map and distance notions may be of a geographical nature (e.g., a map of a city or office building), but may also be based on process designs, organisational structures, social networks, due dates, calendars, etc. The framework proposed in this paper is generic and can be applied to any process-aware information system. Moreover, in order to show its practical feasibility, the paper discusses a full-fledged implementation developed in the context of the open-source workflow environment YAWL, together with two real examples stemming from two very different scenarios. The results of an initial usability evaluation of the implementation are also presented, which provide a first indication of the validity of the approach.
Resumo:
Process modeling grammars are used to create models of business processes. In this paper, we discuss how different routing symbol designs affect an individual's ability to comprehend process models. We conduct an experiment with 154 students to ascertain which visual design principles influence process model comprehension. Our findings suggest that design principles related to perceptual discriminability and pop out improve comprehension accuracy. Furthermore, semantic transparency and aesthetic design of symbols lower the perceived difficulty of comprehension. Our results inform important principles about notational design of process modeling grammars and the effective use of process modeling in practice.
Resumo:
Nowadays, most of the infrastructure development projects undertaken are complex in nature. Practically, public clients who do not have a good understanding of the design and management may suffer severe losses, especially for infrastructure projects. There is a need for luring the right consultant to secure client's investment in infrastructure developments. Throughout the project life cycle, consultants play vital role from the inception to completion stage of a project. A few studies in Malaysia show that infrastructure projects involving irrigation and drainage have experience problems such as poor workmanship, delay and cost overrun due to the consultant's inability or the client incompetence of recruiting consultants in time. This highlights the need of aided decision making and an efficient system to select the best consultant by using Decision Support System (DSS). On the other hand, recent trends reveal that most DSS in construction only concentrate on decision model development. These models are impractical and unused as they are complicated or difficult for laymen such as project managers to utilize. Thus, this research attempts to develop an efficient DSS for consultant selection namely consultDeSS. Driven by the motivation and research aims, this study deployed Design Science Research Methodology (DSRM) dominant with a combination of case studies at the Malaysian Department of Irrigation and Drainage (DID). Two real projects involving irrigation and drainage infrastructure were used to design, implement and evaluate the artefact. The 3-tier consultDeSS was revised after the evaluation and the design was significantly improved based on user feedback. By developing desirable tools that fit client's needs will enhance the productivity and minimize conflict within groups and organisations. The tool is more usable and efficient compared to previous studies in construction. Thus, this research has demonstrated a purposeful artefact with a practical and valid structured development approach that is applicable in a variety of problems in construction discipline.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
A matched case-control study of mortality to children under age five was conducted to consider associations with parents' socio-economic status and social support in the Farafenni Demographic Surveillance Site (DSS). Cases and controls were selected from Farafenni DSS, matched on date of birth, and parents were interviewed about personal resources and social networks. Parents with the lowest personal socio-economic status and social support were identified. Multivariate multinomial regression was used to consider whether the children of these parents were at increased risk of either infant or 1-4 mortality, in separate models using either parents' characteristics. There was no benefit found for higher SES or better social support with respect to child mortality. Children of fathers who had the poorest social support had lower 1-4 mortality risk (OR=0.52, p=0.037). Given that socio-economic status was not associated with child mortality, it seems unlikely that the explanation for the link between father's social support and mortality is linked to resource availability. Explanations for the risk effect of father's social ties may lie in decision-making around health maintenance and health care for children.
Resumo:
Through the application of process mining, valuable evidence-based insights can be obtained about business processes in organisations. As a result the field has seen an increased uptake in recent years as evidenced by success stories and increased tool support. However, despite this impact, current performance analysis capabilities remain somewhat limited in the context of information-poor event logs. For example, natural daily and weekly patterns are not considered. In this paper a new framework for analysing event logs is defined which is based on the concept of event gap. The framework allows for a systematic approach to sophisticated performance-related analysis of event logs containing varying degrees of information. The paper formalises a range of event gap types and then presents an implementation as well as an evaluation of the proposed approach.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Resumo:
Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack.
Resumo:
BACKGROUND After general surgery, the lower limb experiences some of the highest complication rates. However, little is known about contributing factors to surgical site failure in the lower limb dermatological surgery population. OBJECTIVE To determine the incidence of lower limb surgical site failure and to explore the predictors that contribute to surgical site failure. METHODS A prospective observational study design was used to collect data from 73 participants, from July 2010, to March 2012. Incidence was determined as a percentage of surgical site failure from the total population. Predictors were determined by the use of a binary logistic regression model. RESULTS The surgical site failure rate was 53.4%. Split-skin grafting had a higher failure rate than primary closures, 66% versus 26.1%. Predictors of lower limb surgical site failure were identified as increasing age (p = .04) and the presence of postoperative hematoma (p = .01), with all patients who developed surgical site infection experiencing surgical site failure (p = .01). CONCLUSION Findings from this study confirmed that the lower limb is at high risk of surgical site failure. Two predictors of surgical site failure from this cohort were determined. However, to understand this phenomenon and make recommendations to assist and reduce surgical site complications, further research in this field is required.