92 resultados para DNA, copolymer, hybrid, self organisation, sticky-end
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
In John Frazer's seminal book An Evolutionary Architecture (1995), from which this essay is extracted, a fundamental approach is established for have natural systems can unfold mechanisms for negotiating the complex design space inherent in architectural systems. In this essay, which forms a critical part of the book, Frazer draws both correlations and distinctions from natural processes as emulated in design processes and form as active manifestations within natural systems. Form is seen as an evolving agent generated via the rules of descriptive genetic coding, functioning as a part of a metabolic environment. Frazer's process-model establishes the realm in which computation must manoeuvre to produce a valid solution space, including the operations of self-organisation, complexity and emergent behaviour. Addressing design as an authored practice, he extends the transference of 'creativity' from the explicit impression into form, to the investment of though, organisation and strategy in the computational processes which produce form. Frazer's text concentrates astutely on the practising of the evolutionary paradigm, the output of which postulates an architecture born of the relationships to dynamic environmental and socio-economic contexts, and realised through morphogenetic materialisation.
Resumo:
This paper addresses the question of how to open up pathways and build capacity to facilitate the movement towards sustainable sub-tropical cities. The focus is on outlining a collaborative planning and co-design process that can help catalyse the emergence of sustainable place-habitats and so re-weave and colour anew the tapestry of our sub-tropical cities. Cities are portrayed as self-organising complex adaptive system phenomena, being constantly re-shaped by local and global social-political, environmental, cultural and economic forces as well as planning regimes. While constructing a sustainable city is at essence a design process incorporating new sustainable practices and legislation to reinforce their use, these steps are necessary but not sufficient. Sustainable sub-tropical city-making could be re-thought as a dreaming-re-storying process. This paper explores a new co-design process, which can channel collaborative efforts around re-inventing sustainable place-habitats across the cityscape. A further outcome of this co-design process is the alignment of the emergent design principles and planning actions that can trigger the re-storying of a new sustainable sub-tropical city. Besides a new co-design process, we also advocate the building of sub-tropical city learning networks to facilitate the cross-fertilization for Dreaming sustainable sub-tropical cities.
Resumo:
The overarching aim of this thesis was to investigate how processes of perception and action emerge under changing informational constraints during performance of multi-articular interceptive actions. Interceptive actions provide unique opportunities to study processes of perception and action in dynamic performance environments. The movement model used to exemplify the functionally coupled relationship between perception and action, from an ecological dynamics perspective, was cricket batting. Ecological dynamics conceptualises the human body as a complex system composed of many interacting sub-systems, and perceptual and motor system degrees of freedom, which leads to the emergence of patterns of behaviour under changing task constraints during performance. The series of studies reported in the Chapters of this doctoral thesis contributed to understanding of human behaviour by providing evidence of key properties of complex systems in human movement systems including self-organisation under constraints and meta-stability. Specifically, the studies: i) demonstrated how movement organisation (action) and visual strategies (perception) of dynamic human behaviour are constrained by changing ecological (especially informational) task constraints; (ii) provided evidence for the importance of representative design in experiments on perception and action; and iii), provided a principled theoretical framework to guide learning design in acquisition of skill in interceptive actions like cricket batting.
Resumo:
This paper proposes how ecological dynamics, a theory focusing on the performer-environment relationship, provides a basis for understanding skill acquisition in sport. From this perspective, learners are conceptualized as complex, neurobiological systems in which inherent self-organisation tendencies support the emergence of adaptive behaviours under a range of interacting task and environmental constraints. Intentions, perceptions and actions are viewed as intertwined processes which underpin functional movement solutions assembled by each learner during skill acquisition. These ideas suggest that skill acquisition programmes need to sample information from the performance environment to guide behaviour in practice tasks. Skill acquisition task protocols should allow performers to use movement variability to explore and create opportunities for action, rather than constraining them to passively receiving information. This conceptualisation also needs to characterize the design of talent evaluation tests, which need to faithfully represent the perception-action relationships in the performance environment. Since the dynamic nature of changing task constraints in sports cannot be predicted over longer timescales, an implication is that talent programmes should focus on developing performance expertise in each individual, rather than over-relying on identification of expert performers at specific points in time.
Resumo:
Coordinative couplings are commonly classified as interpersonal and intrapersonal. Interpersonal coordination is normally thought of as between organisms but a subset can also be considered where the co-actors movements are coupled to an environmental rhythm. This can be termed extrapersonal coordination. This study explores how coordination is achieved in a situation that demands that at least one actor makes use of extrapersonal sources. In this case multi-seat rowing, where one actor cannot see the other one behind them. A qualitative approach using experiential knowledge from expert rowers (N=9) and coaches (N=4) was used to examine how interpersonal coordination was achieved and maintained in 2 person rowing boats. It was reported that where possible, both rowers coordinated their movements by coupling with an invariant provided by the boat. This invariant is underpinned by perception of water flow past the boat; which is in turn used to determine changes in acceleration - 'rowing with the boat.' Bow seat also identified the rower in front and stroke seat identified the looming of the stern as viable alternative sources for coupling.
Resumo:
Drawing from experience internationally, on recent and important developments in regulatory theory, and upon models and approaches constructed during the author's empirical research, this book addresses the question: how can law influence the internal self-regulation of organisations in order to make them more responsive to occupational health and safety concerns? In this context, it is argued that Occupational Health and Safety management systems have the potential to stimulate models of self-organisation within firms in such a way as to make them self-reflective and to encourage informal self-critical reflection about their occupational health and safety performance.
Resumo:
The aim of this project was to develop a general theory of stigmergy and a software design pattern to build collaborative websites. Stigmergy is a biological term used when describing some insect swarm-behaviour where 'food gathering' and 'nest building' activities demonstrate the emergence of self-organised societies achieved without an apparent management structure. The results of the project are an abstract model of stigmergy and a software design pattern for building Web 2.0 components exploiting this self-organizing phenomenon. A proof-of-concept implementation was also created demonstrating potential commercial viability for future website projects.
Resumo:
This thesis aimed to compare the effects of constraints-led and traditional coaching approaches on young cricket spin bowlers, with a specific research focus on increasing spin rates (i.e., Revolutions per Minute). Participants were 22 spin bowlers from either an Australia state youth squad or an academy in England. Results indicate that adopting a constraints-led approach can benefit younger, inexperienced bowlers, whilst a traditional approach may assist more skilled, older bowlers. The findings are discussed with regards to how they may inform the learning design of training programs by cricket coaches.
Resumo:
A bioassay technique, based on surface-enhanced Raman scattering (SERS) tagged gold nanoparticles encapsulated with a biotin functionalised polymer, has been demonstrated through the spectroscopic detection of a streptavidin binding event. A methodical series of steps preceded these results: synthesis of nanoparticles which were found to give a reproducible SERS signal; design and synthesis of polymers with RAFT-functional end groups able to encapsulate the gold nanoparticle. The polymer also enabled the attachment of a biotin molecule functionalised so that it could be attached to the hybrid nanoparticle through a modular process. Finally, the demonstrations of a positive bioassay for this model construct using streptavidin/biotin binding. The synthesis of silver and gold nanoparticles was performed by using tri-sodium citrate as the reducing agent. The shape of the silver nanoparticles was quite difficult to control. Gold nanoparticles were able to be prepared in more regular shapes (spherical) and therefore gave a more consistent and reproducible SERS signal. The synthesis of gold nanoparticles with a diameter of 30 nm was the most reproducible and these were also stable over the longest periods of time. From the SERS results the optimal size of gold nanoparticles was found to be approximately 30 nm. Obtaining a consistent SERS signal with nanoparticles smaller than this was particularly difficult. Nanoparticles more than 50 nm in diameter were too large to remain suspended for longer than a day or two and formed a precipitate, rendering the solutions useless for our desired application. Gold nanoparticles dispersed in water were able to be stabilised by the addition of as-synthesised polymers dissolved in a water miscible solvent. Polymer stabilised AuNPs could not be formed from polymers synthesised by conventional free radical polymerization, i.e. polymers that did not possess a sulphur containing end-group. This indicated that the sulphur-containing functionality present within the polymers was essential for the self assembly process to occur. Polymer stabilization of the gold colloid was evidenced by a range of techniques including, visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectroscopy. After treatment of the hybrid nanoparticles with a series of SERS tags, focussing on 2-quinolinethiol the SERS signals were found to have comparable signal intensity to the citrate stabilised gold nanoparticles. This finding illustrates that the stabilization process does not interfere with the ability of gold nanoparticles to act as substrates for the SERS effect. Incorporation of a biotin moiety into the hybrid nanoparticles was achieved through a =click‘ reaction between an alkyne-functionalised polymer and an azido-functionalised biotin analogue. This functionalized biotin was prepared through a 4-step synthesis from biotin. Upon exposure of the surface-bound streptavidin to biotin-functionalised polymer hybrid gold nanoparticles, then washing, a SERS signal was obtained from the 2-quinolinethiol which was attached to the gold nanoparticles (positive assay). After exposure to functionalised polymer hybrid gold nanoparticles without biotin present then washing a SERS signal was not obtained as the nanoparticles did not bind to the streptavidin (negative assay). These results illustrate the applicability of the use of SERS active functional-polymer encapsulated gold nanoparticles for bioassay application.
Resumo:
This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV–Vis and Raman), we show how the polymer’s higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT p-p stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Volunteering Qld’s Project Creatives continues to explore the critical role creative disciplines and creative people play in providing new models of engagement and action in social change and community work. This article explores three different non-profit organisations that have used collaborative photography to enable locals to empower themselves. Written by Alice Baroni a volunteer with the Education, Research and Policy Unit of Volunteering Qld. Alice is undertaking a PhD at the Queensland University of Technology, exploring (photo) journalism, participatory content creation and community photography in Brazil’s low income suburbs. She is part of the ARC Centre of Excellence for Creative Industries and Innovation, and a Brazilian research group ‘Storytellers and Narratives: Contemporary Journalism’. Two of the initiatives explored in this publication are Viva Favela and Imagens do Povo that are ideologically and physically supported by, respectively, Viva Rio and Observatório de Favelas, based in Rio de Janeiro, Brazil. ‘Favela’ is often translated simply as ‘slum’ or ‘shantytown’, but these terms connote negative characteristics such as shortage, poverty, and deprivation, which end up stigmatising these low-income suburbs. Fotografi Senza Frontiere (FSF) (Photographers Without Borders) is an Italian non-governmental organisation that gathers together a group of photographers who aim to provide youth from extreme regions in Nicaragua, Algeria, Argentina, Panama, Uganda, and Palestine with skills to photograph and document their own reality by establishing permanent photo laboratories. This idea, which is similar to that of Viva Favela and Imagens do Povo, is to enable youth to become professional photographers as a means of self-representation and self-empowerment. Afterwards, students become educators in established photographic labs so as to pass on what they have learnt through FSF’s photographic courses.