60 resultados para DENGUE - PREVENÇÃO E CONTROLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue fever is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009-2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. CONCLUSIONS/SIGNIFICANCE: This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modelling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001-2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Dengue poses a problem for safe transfusion of blood components with confirmed reports of transfusion-transmission in Hong Kong and Singapore. The largest outbreak in 50 years occurred in North Queensland during 2008/2009 with more than 1,000 confirmed cases in Cairns and Townsville. During this outbreak, supplementary questioning for all donors was implemented, and fresh components were not manufactured from at risk donors. We aim to determine the seroprevalence of dengue exposure in this population during this epidemic. Methods: Samples were collected from blood donors during the 2008/2009 epidemic and 3 months after the last confirmed case. These samples were tested for anti-Dengue IgM, IgG and NS1 antigen with commercially available ELISA based assay kits from PanBio. Results: Initial analyses revealed 2.7% of samples from deferred donors were IgM repeat reactive. Of these, 16% were also positive for anti-dengue IgG, while none of these were positive for the NS1 viral antigen. However, two NS1 positives were found in samples collected from deferred donors. Conclusions: This initial analysis represents recent and cumulative past exposure in a presumed asymptomatic population, and will provide documentation of the rate of asymptomatic dengue infection during the epidemic. This data can also be used to assess the risk of dengue becoming endemic in North Queensland given that the mosquito vector is established in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In early April 1998, the Centre for Disease Control in Darwin was notified of a possible case of dengue which appeared to have been acquired in the Northern Territory. Because dengue is not endemic to the Northern Territory, locally acquired infection has significant public health implications, particularly for vector identification and control to limit the spread of infection. Dengue IgM serology was positive on two occasions, but the illness was eventually presumptively identified as Kokobera infection. This case illustrates the complexity of interpreting flavivirus serology. Determining the cause of infection requires consideration of the clinical illness, the incubation period, the laboratory results and vector presence. Waiting for confirmation of results, before the institution of the public health measures necessary for a true case of dengue, was ultimately justified in this case. This is a valid approach in the Northern Territory, but may not be applicable to areas of Australia with established vectors for dengue. Commun Dis Intell 1998;22:105-107.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In Pacific Island Countries (PICs) the epidemiology of dengue is characterized by long-term transmission of a single dengue virus (DENV) serotype. The emergence of a new serotype in one island country often indicates major outbreaks with this serotype will follow in other PICs. Objectives Filter paper (FP) cards on which whole blood or serum from dengue suspected patients had been dried was evaluated as a method for transportation of this material by standard mail delivery throughout the Pacific. Study design Twenty-two FP-dried whole blood samples collected from patients in New Caledonia and Wallis & Futuna Islands, during DENV-1 and DENV-4 transmission, and 76 FP-dried sera collected from patients in Yap State, Majuro (Republic of Marshall Islands), Tonga and Fiji, before and during outbreaks of DENV-2 in Yap State and DENV-4 in Majuro, were tested for the presence of DENV RNA, by serotype specific RT-PCR, at the Institut Louis Malardé in French Polynesia. Results The serotype of DENV could be determined, by a variety of RT-PCR procedures, in the FP-dried samples after more than three weeks of transport at ambient temperatures. In most cases, the sequencing of the envelope gene to genotype the viruses also was possible. Conclusions The serotype and genotype of DENV can be determined from FP-dried serum or whole blood samples transported over thousands of kilometers at ambient, tropical, temperatures. This simple and low-cost approach to virus identification should be evaluated in isolated and resource poor settings for surveillance for a range of significant viral diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction In January 2013, clinicians in Honiara, Solomon Islands noted several patients presenting with dengue-like illness. Serum from three cases tested positive for dengue by rapid diagnostic test. Subsequent increases in cases were reported, and the outbreak was confirmed as being dengue serotype-3 by further laboratory tests. This report describes the ongoing outbreak investigation, findings and response. Methods Enhanced dengue surveillance was implemented in the capital, Honiara, and in the provinces. This included training health staff on dengue case definitions, data collection and reporting. Vector surveillance was also conducted. Results From 3 January to 15 May 2013, 5254 cases of suspected dengue were reported (101.8 per 10 000 population), including 401 hospitalizations and six deaths. The median age of cases was 20 years (range zero to 90), and 86% were reported from Honiara. Both Aedes aegyti and Aedes albopictus were identified in Honiara. Outbreak response measures included clinical training seminars, vector control activities, implementation of diagnostic and case management protocols and a public communication campaign. Discussion This was the first large dengue outbreak documented in Solomon Islands. Factors that may have contributed to this outbreak include a largely susceptible population, the presence of a highly efficient dengue vector in Honiara, a high-density human population with numerous breeding sites and favourable weather conditions for mosquito proliferation. Although the number of cases has plateaued since 1 April, continued enhanced nationwide surveillance and response activities are necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue fever (DF) is a serious public health concern in many parts of the world. An increase in DF incidence has been observed globally over the past decades. Multiple factors including urbanisation, increased international travels and global climate change are thought to be responsible for increased DF. However, little research has been conducted in the Asia-Pacific region about the impact of these changes on dengue transmission. The overarching aim of this thesis is to explore the spatiotemporal pattern of DF transmission in the Asia-Pacific region and project the future risk of DF attributable to climate change. Annual data of DF outbreaks for sixteen countries in the Asia-Pacific region over the last fifty years were used in this study. The results show that the geographic range of DF in this region increased significantly over the study period. Thailand, Vietnam and Laos were identified as the highest risk areas and there was a southward expansion observed in the transmission pattern of DF which might have originated from Philippines or Thailand. Additionally, the detailed DF data were obtained and the space-time clustering of DF transmission was examined in Bangladesh. Monthly DF data were used for the entire country at the district level during 2000-2009. Dhaka district was identified as the most likely DF cluster in Bangladesh and several districts of the southern part of Bangladesh were identified as secondary clusters in the years 2000-2002. In order to examine the association between meteorological factors and DF transmission and to project the future risk of DF using different climate change scenarios, the climate-DF relationship was examined in Dhaka, Bangladesh. The results show that climate variability (particularly maximum temperature and relative humidity) was positively associated with DF transmission in Dhaka. The effects of climate variability were observed at a lag of four months which might help to potentially control and prevent DF outbreaks through effective vector management and community education. Based on the quantitative assessment of the climate-DF relationship, projected climate change will likely increase mosquito abundance and activity and DF in this area. Assuming a temperature increase of 3.3oC without any adaptation measures and significant changes in socio-economic conditions, the consequence will be devastating, with a projected annual increase of 16,030 cases in Dhaka, Bangladesh by the end of this century. Therefore, public health authorities need to be prepared for likely increase of DF transmission in this region. This study adds to the literature on the recent trends of DF and impacts of climate change on DF transmission. These findings may have significant public health implications for the control and prevention of DF, particularly in the Asia- Pacific region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather variables, mainly temperature and humidity influence vectors, viruses, human biology, ecology and consequently the intensity and distribution of the vector-borne diseases. There is evidence that warmer temperature due to climate change will influence the dengue transmission. However, long term scenario-based projections are yet to be developed. Here, we assessed the impact of weather variability on dengue transmission in a megacity of Dhaka, Bangladesh and projected the future dengue risk attributable to climate change. Our results show that weather variables particularly temperature and humidity were positively associated with dengue transmission. The effects of weather variables were observed at a lag of four months. We projected that assuming a temperature increase of 3.3 °C without any adaptation measure and changes in socio-economic condition, there will be a projected increase of 16,030 dengue cases in Dhaka by the end of this century. This information might be helpful for the public health authorities to prepare for the likely increase of dengue due to climate change. The modelling framework used in this study may be applicable to dengue projection in other cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective:  To examine the space-time clustering of dengue fever (DF) transmission in Bangladesh using geographical information system and spatial scan statistics (SaTScan). Methods:  We obtained data on monthly suspected DF cases and deaths by district in Bangladesh for the period of 2000–2009 from Directorate General of Health Services. Population and district boundary data of each district were collected from national census managed by Bangladesh Bureau of Statistics. To identify the space-time clusters of DF transmission a discrete Poisson model was performed using SaTScan software. Results:  Space-time distribution of DF transmission was clustered during three periods 2000–2002, 2003–2005 and 2006–2009. Dhaka was the most likely cluster for DF in all three periods. Several other districts were significant secondary clusters. However, the geographical range of DF transmission appears to have declined in Bangladesh over the last decade. Conclusion:  There were significant space-time clusters of DF in Bangladesh over the last decade. Our results would prompt future studies to explore how social and ecological factors may affect DF transmission and would also be useful for improving DF control and prevention programs in Bangladesh.