233 resultados para Cycling wind loading
Resumo:
This study explores three-dimensional nonlineardynamic responses of typical tall buildings with and without setbacks under blast loading. These 20 storey reinforced concrete buildings have been designed for normal (dead, live and wind)loads. The influence of the setbacks on the lateral load response due to blasts in terms of peak deflections, accelerations, inter-storey drift and bending moments at critical locations (including hinge formation) were investigated. Structural response predictions were performed with a commercially available three-dimensional finite element analysis programme using non-linear direct integration time history analyses. Results obtained for buildings with different setbacks were compared and conclusions made. The comparisons revealed that buildings have setbacks that protect the tower part above the setback level from blast loading show considerably better response in terms of peak displacement and interstorey drift, when compared to buildings without setbacks. Rotational accelerations were found to depend on the periods of the rotational modes. Abrupt changes in moments and shears are experienced near the levels of the setbacks. Typical twenty storey tall buildings with shear walls and frames that are designed for only normaln loads perform reasonably well, without catastrophic collapse, when subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m.
Resumo:
A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.
Resumo:
Convective downburst wind storms generate the peak annual gust wind speed for many parts of the non-cyclonic world at return periods of importance for ultimate limit state design. Despite this there is little clear understanding of how to appropriately design for these wind events given their significant dissimilarities to boundary layer winds upon which most design is based. To enhance the understanding of wind fields associated with these storms a three-dimensional numerical model was developed to simulate a multitude of idealised downburst scenarios and to investigate their near-ground wind characteristics. Stationary and translating downdraft wind events in still and sheared environments were simulated with baseline results showing good agreement with previous numerical work and full-scale observational data. Significant differences are shown in the normalised peak wind speed velocity profiles depending on the environmental wind conditions in the vicinity of the simulated event. When integrated over the height of mid- to high rise structures, all simulated profiles are shown to produce wind loads smaller than an equivalent 10 m height matched open terrain boundary layer profile. This suggests that for these structures the current design approach is conservative from an ultimate loading standpoint. Investigating the influence of topography on the structure of the simulated near-ground downburst wind fields, it is shown that these features amplify wind speeds in a manner similar to that expected for boundary layer winds, but the extent of amplification is reduced. The level of reduction is shown to be dependent on the depth of the simulated downburst outflow.
Resumo:
Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.
Resumo:
An offshore wind turbine usually has the grid step-up transformer integrated in the nacelle. This increases mechanical loading of the tower. In that context, a transformer-less, high voltage, highly-reliable and compact converter system for nacelle installation would be an attractive solution for large offshore wind turbines. This paper, therefore, presents a transformer-less grid integration topology for PMSG based large wind turbine generator systems using modular matrix converters. Each matrix converter module is fed from three generator coils of the PMSG which are phase shifted by 120°. Outputs of matrix converter modules are connected in series to increase the output voltage and thus eliminate the need of a coupling step-up transformer. Moreover, dc-link capacitors found in conventional back-to-back converter topologies are eliminated in the proposed system. Proper multilevel output voltage generation and power sharing between converter modules are achieved through an advanced switching strategy. Simulation results are presented to validate the proposed modular matrix converter system, modulation method and control techniques.
Resumo:
Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.
Resumo:
Profiled steel roof claddings in Australia and its neighbouring countries are commonly made of very thin high tensile steel and are crest-fixed intermittently with screw fasteners. The failure of the roof cladding systems was due to a local failure (dimpling of crests I pull-through) at the fasteners under wind uplift Cyclic wind uplift during cyclones causes fatigue cracking to occur at the fastener holes which leads to pull-through failures at lower load levels. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour and the design and test methods of these claddings under wind uplift loading during storms and cyclones, a detailed investigation consisting of finite element analyses, static and fatigue experiments and cyclonic wind modelling was carried out on two-span roofing assemblies of three common roofing profiles. This paper presents the details of this investigation and its important results.
Resumo:
This presentation will provide an overview of the load applied on the residuum of transfemoral amputees fitted with an osseointegrated fixation during (A) rehabilitation, including static and dynamic load bearing exercises (e.g., rowing, adduction, abduction, squat, cycling, walking with aids), and (B) activities of daily living including standardized activities (e.g., level walking in straight line and around a circle, ascending and descending slopes and stairs) and activities in real world environments.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
To shed light on the potential efficacy of cycling as a testing modality in the treatment of intermittent claudication (IC), this study compared physiological and symptomatic responses to graded walking and cycling tests in claudicants. Sixteen subjects with peripheral arterial disease (resting ankle: brachial index (ABI) < 0.9) and IC completed a maximal graded treadmill walking (T) and cycle (C) test after three familiarization tests on each mode. During each test, symptoms, oxygen uptake (VO2), minute ventilation (VE), respiratory exchange ratio (RER) and heart rate (HR) were measured, and for 10 min after each test the brachial and ankle systolic pressures were recorded. All but one subject experienced calf pain as the primary limiting symptom during T; whereas the symptoms were more varied during C and included thigh pain, calf pain and dyspnoea. Although maximal exercise time was significantly longer on C than T (690 +/- 67 vs. 495 +/- 57 s), peak VO2, peak VE and peak heart rate during C and T were not different; whereas peak RER was higher during C. These responses during C and T were also positively correlated (P < 0.05) with each other, with the exception of RER. The postexercise systolic pressures were also not different between C and T. However, the peak decline in ankle pressures from resting values after C and T were not correlated with each other. These data demonstrate that cycling and walking induce a similar level of metabolic and cardiovascular strain, but that the primary limiting symptoms and haemodynamic response in an individual's extremity, measured after exercise, can differ substantially between these two modes.