18 resultados para Cycles limites
Resumo:
STUDY QUESTION Can the number of oocytes retrieved in IVF cycles be predictive of the age at menopause? SUMMARY ANSWER The number of retrieved oocytes can be used as an indirect assessment of the extent of ovarian reserve to provide information on the duration of the reproductive life span in women of different ages. WHAT IS KNOWN ALREADY Menopause is determined by the exhaustion of the ovarian follicular pool. Ovarian reserve is the main factor influencing ovarian response in IVF cycles. As a consequence the response to ovarian stimulation with the administration of gonadotrophins in IVF treatment may be informative about the age at menopause. STUDY DESIGN, SIZE, DURATION In the present cross-sectional study, participants were 1585 infertile women from an IVF clinic and 2635 menopausal women from a more general population. PARTICIPANTS/MATERIALS, SETTING, METHODS For all infertile women, the response to ovarian stimulation with gonadotrophins was recorded. For menopausal women, relevant demographic characteristics were available for the analysis. MAIN RESULTS AND THE ROLE OF CHANCE A cubic function described the relationship between mean numbers of oocytes and age, with all terms being statistically significant. From the estimated residual distribution of the actual number of oocytes about this mean, a distribution of the age when there would be no oocytes retrieved following ovarian stimulation was derived. This was compared with the distribution of the age at menopause from the menopausal women, showing that menopause occurred about a year later. LIMITATIONS, REASONS FOR CAUTION The retrieved oocyte data were from infertile women, while the menopausal ages were from a more general population. WIDER IMPLICATIONS OF THE FINDINGS In the present study, we have shown some similarity between the distributions of the age when no retrieved oocytes can be expected after ovarian stimulation and the age at menopause. For a given age, the lower the ovarian reserve, the lower the number of retrieved oocytes would be and the earlier the age that menopause would occur.
Resumo:
Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed—from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.