28 resultados para Continuously stirred tank reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video-based training combined with flotation tank recovery may provide an additional stimulus for improving shooting in basketball. A pre-post controlled trial was conducted to assess the effectiveness of a 3 wk intervention combining video-based training and flotation tank recovery on three-point shooting performance in elite female basketball players. Players were assigned to an experimental (n=10) and control group (n=9). A 3 wk intervention consisted of 2 x 30 min float sessions a week which included 10 min of video-based training footage, followed by a 3 wk retention phase. A total of 100 three-point shots were taken from 5 designated positions on the court at each week to assess three-point shooting performance. There was no clear difference in the mean change in the number of successful three-point shots between the groups (-3%; ±18%, mean; ±90% confidence limits). Video-based training combined with flotation recovery had little effect on three-point shooting performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.