27 resultados para Conjugation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we inserted the plasmid vector pKK233-2 containing rat GSH S-transferase (GST) 5-5 cDNA into Salmonella typhimurium TA1535 and found that these bacteria [GST 5-5(+)] expressed the protein and produced mutations when ethylene or methylene dihalides were added [Thier, R., Taylor, J. B., Pemble, S. E., Ketterer, B., Persmark, M., Humphreys, W. G., and Guengerich, F. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8576-8580]. After exposure to the known GST 5-5 substrate 1,2-epoxy-3-(4′-nitrophenoxy)propane, the GST 5-5(+) strain showed fewer mutants than the bacteria transfected with the cDNA clone in a reverse orientation [GST 5-5(-)], suggesting a protective role of GST 5-5. However, mutations were considerably enhanced in the GST 5-5(+) strain [as compared to GST 5-5(-)] when 1,2,3,4-diepoxybutane (butadiene diepoxide) or 1,2-epoxy-4-bromobutane was added. The GST 5-5(+) and GST 5-5(-) bacterial stains showed similar responses to 1,2-epoxypropane, 3,4-epoxy-1-butene, and 1,4-dibromobutane. The results suggest that some bifunctional activated butanes are transformed to mutagenic products through GSH conjugation. We also found that the GST 5-5(+) strain showed enhanced mutagenicity with 1,4-dibromo-2,3-epoxybutane, 1,2-epoxy-3-bromopropane (epibromohydrin), and (±)-1,4-dibromo-2,3-dihydroxybutane. The possibility was considered that a 5-membered thialonium ion may be involved in the mutagenicity. Model thialonium compounds were rather stable to hydrolysis in aqueous solution at pH 7.4 and slowly alkylated 4-(4-nitrobenzyl)pyridine. The presence of a hydroxyl group β to the sulfur did not enhance reactivity. Mechanisms involving episulfonium ions are considered more likely. Potential oxidation products of the toxic pesticide 1,2-dibromo-3-chloropropane (DBCP) were also considered in this system. DBCP itself gave rather similar results in the two strains. Others have reported that oxidation of DBCP is required for mutagenicity, along with GST-catalyzed GSH conjugation [Simula, T. P., Glancey, M. J., Söderlund, E. J., Dybing, E., and Wolf, C. R. (1993) Carcinogenesis 14, 2303-2307]. The putative oxidation product 1,2-dibromopropional did not show a difference between the two strains. However, 1,3-dichloroacetone, a model for the putative oxidation product 1-bromo-3-chloroacetone, was considerably more mutagenic in the GST 5-5(+) strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dihalomethanes can produce liver tumors in mice but not in rats, and concern exists about the risk of these compounds to humans. Glutathione (GSH) conjugation of dihalomethanes has been considered to be a critical event in the bioactivation process, and risk assessment is based upon this premise; however, there is little experimental support for this view or information about the basis of genotoxicity. A plasmid vector containing rat GSH S-transferase 5-5 was transfected into the Salmonella typhimurium tester strain TA1535, which then produced active enzyme. The transfected bacteria produced base-pair revertants in the presence of ethylene dihalides or dihalomethanes, in the order CH2Br2 > CH2BrCl > CH2Cl2. However, revertants were not seen when cells were exposed to GSH, CH2Br2, and an amount of purified GSH S-transferase 5-5 (20-fold excess in amount of that expressed within the cells). HCHO, which is an end product of the reaction of GSH with dihalomethanes, also did not produce mutations. S-(1-Acetoxymethyl)GSH was prepared as an analog of the putative S-(1-halomethyl)GSH reactive intermediates. This analog did not produce revertants, consistent with the view that activation of dihalomethanes must occur within the bacteria to cause genetic damage, presenting a model to be considered in studies with mammalian cells. S-(1-Acetoxymethyl)GSH reacted with 2′-deoxyguanosine to yield a major adduct, identified as S-[1-(N2-deoxyguanosinyl)methyl]GSH. Demonstration of the activation of dihalomethanes by this mammalian GSH S-transferase theta class enzyme should be of use in evaluating the risk of these chemicals, particularly in light of reports of the polymorphic expression of a similar activity in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferase (GST) GSTT1-1 is involved in the biotransformation of several chemicals widely used in industry, such as butadiene and dichloro methane DCM. The polymorphic hGSTT1-1 may well play a role in the development of kidney tumours after high and long-term occupational exposure against trichloroethylene. Although several studies have investigated the association of this polymorphism with malignant diseases little is known about its enzyme activity in potential extrahepatic target tissues. The known theta-specific substrates methyl chloride (MC) dichloromethane and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) were used to assay GSTT1-1 activity in liver and kidney of rats, mice, hamsters and humans differentiating the three phenotypes (non-conjugators, low conjugators, high conjugators) seen in humans. In addition GSTT1-1 activity towards MC and DCM was determined in human erythrocytes. No GSTT1-1 activity was found in any tissue of non-conjugators (NC). In all organs high conjugators (HC) showed twofold higher activity towards MC and DCM than low conjugators (LC). The activity in human samples towards EPNP was too close to the detection limit to differentiate between the three conjugator phenotypes. GSTT1-1 activity towards MC was two to seven-times higher in liver cytosol than in kidney cytosol. The relation for MC between species was identical in both organs: mouse > HC > rat > LC > hamster > NC. In rats, mice and hamsters GSTT1-1 activity in liver cytosol towards DCM was also two to seven-times higher than in the kidney cytosol. In humans this activity was twice as high in kidney cytosol than in liver cytosol. The relation between species was mouse > rat > HC > LC > hamster > NC for liver, but mouse > HC > LC/rat > hamster/NC for kidney cytosol. The importance to heed the specific environment at potential target sites in risk assessment is emphasized by these results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimers have potential for delivering chemotherapeutic drugs to solid tumours via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterised the effect on dendrimer disposition of conjugating α-carboxyl protected methotrexate (MTX) to a series of PEGylated 3H-labelled poly-L-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG570 dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG1100 dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumours and comparative disposition data in both rats (1 to 2% dose/g in tumour) and mice (11% dose/g in tumour) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-L-lysine dendrimers as long circulating vectors for the delivery and tumour-targeting of hydrophobic drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Evaluate potential of newly-developed, biocompatible iron oxide magnetic nanoparticles (MNPs) conjugated with J591, an antibody to an extracellular epitope of prostate specific membrane antigen (PSMA), to enhance MRI of prostate cancer (PCa). Materials & Methods Specific binding to PSMA by J591-MNP was investigated in vitro. MRI studies were performed on orthotopic tumor-bearing NOD.SCID mice 2h and 24hr after intravenous injection of J591-MNPs, or non-targeting MNPs. Results and Conclusions In vitro, MNPs did not affect PCa cell viability, and conjugation to J591 did not compromise antibody specificity and enhanced cellular iron uptake. In vivo, PSMA-targeting MNPs increased MR contrast of tumors, but not by non-targeting MNPs. This provides proof-of-concept that PSMA-targeting MNPs have potential to enhance MR detection/localization of PCa.,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Pt(II) diimine complexes bearing benzothiazolylfluorenyl (BTZ-F8), diphenylaminofluorenyl (NPh2- F8), or naphthalimidylfluorenyl (NI-F8) motifs on the bipyridyl or acetylide ligands (Pt-4−Pt-8), (i.e., {4,4′-bis[7-R1-F8-(≡)n-]bpy}Pt(7- R2-F8- ≡ -)2, where F8 = 9,9′-di(2-ethylhexyl)fluorene, bpy = 2,2′- bipyridine, Pt-4: R1 = R2 = BTZ, n = 0; Pt-5: R1 = BTZ, R2 = NI, n = 0; Pt-6: R1 = R2 = BTZ, n = 1; Pt-7: R1 = BTZ, R2 = NPh2, n = 1; Pt- 8: R1 = NPh2, R2 = BTZ, n = 1) were synthesized. Their ground-state and excited-state properties and reverse saturable absorption performances were systematically investigated. The influence of these motifs on the photophysics of the complexes was investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The intense absorption bands below 410 nm for these complexes is assigned to predominantly 1π,π* transitions localized on either the bipyridine or the acetylide ligands; while the broad low-energy absorption bands between 420 and 575 nm are attributed to essentially 1MLCT (metal-to-ligand charge transfer)/ 1LLCT (ligand-to-ligand charge transfer) transitions, likely mixed with some 1ILCT (intraligand charge transfer) transition for Pt-4−Pt-7, and predominantly 1ILCT transition admixing with minor 1MLCT/1LLCT characters for Pt-8. The different substituents on the acetylide and bipyridyl ligands, and the degrees of π-conjugation in the bipyridyl ligand influence both the 1π,π* and charge transfer transitions pronouncedly. All complexes are emissive at room temperature. Upon excitation at their respective absorption band maxima, Pt-4, Pt-6, and Pt-8 exhibit acetylide ligand localized 1π,π* fluorescence and 3MLCT/3LLCT phosphorescence in CH2Cl2, while Pt-5 manifests 1ILCT fluorescence and 3ILCT phosphorescence. However, only 1LLCT fluorescence was observed for Pt-7 at room temperature. The nanosecond transient absorption study was carried out for Pt-4−Pt-8 in CH3CN. Except for Pt-7 that contains NPh2 at the acetylide ligands, Pt-4−Pt-6 and Pt-8 all exhibit weak to moderate excited-state absorption in the visible spectral region. Reverse saturable absorption (RSA) of these complexes was demonstrated at 532 nm using 4.1 ns laser pulses in a 2 mm cuvette. The strength of RSA follows this trend: Pt-4 > Pt-5 > Pt-7 > Pt-6 > Pt-8. Incorporation of electron-donating substituent NPh2 on the bipyridyl ligand significantly decreases the RSA, while shorter π-conjugation in the bipyridyl ligand increases the RSA. Therefore, the substituent at either the acetylide ligands or the bipyridyl ligand could affect the singlet and triplet excited-state characteristics significantly, which strongly influences the RSA efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trans-activator of transcription (TAT) peptide is regarded as the “gold standard” for cell-penetrating peptides, capable of traversing a mammalian membrane passively into the cytosolic space. This characteristic has been exploited through conjugation of TAT for applications such as drug delivery. However, the process by which TAT achieves membrane penetration remains ambiguous and unresolved. Mechanistic details of TAT peptide action are revealed herein by using three complementary methods: quartz crystal microbalance with dissipation (QCM-D), scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). When combined, these three scales of measurement define that the membrane uptake of the TAT peptide is by trans-membrane insertion using a “worm-hole” pore that leads to ion permeability across the membrane layer. AFM data provided nanometre-scale visualisation of TAT punctuation using a mammalian-mimetic membrane bilayer. The TAT peptide does not show the same specificity towards a bacterial mimetic membrane and QCM-D and SECM showed that the TAT peptide demonstrates a disruptive action towards these membranes. This investigation supports the energy-independent uptake of the cationic TAT peptide and provides empirical data that clarify the mechanism by which the TAT peptide achieves its membrane activity. The novel use of these three biophysical techniques provides valuable insight into the mechanism for TAT peptide translocation, which is essential for improvements in the cellular delivery of TAT-conjugated cargoes including therapeutic agents required to target specific intracellular locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To locate the acquired bla(OXA-23) carbapenem resistance gene in an Australian A. baumannii global clone 1 (GC1) isolate. METHODS: The genome of the extensively antibiotic-resistant GC1 isolate A85 harbouring bla(OXA-23) in Tn2006 was sequenced using Illumina HiSeq, and the reads were used to generate a de novo assembly. PCR was used to assemble relevant contigs. Sequences were compared with ones in GenBank. Conjugation experiments were conducted. RESULTS: The sporadic GC1 isolate A85, recovered in 2003, was extensively resistant, exhibiting resistance to imipenem, meropenem and ticarcillin/clavulanate, to cephalosporins and fluoroquinolones and to the older antibiotics gentamicin, kanamycin and neomycin, sulfamethoxazole, trimethoprim and tetracycline. Genes for resistance to older antibiotics are in the chromosome, in an AbaR3 resistance island. A second copy of the ampC gene in Tn6168 confers cephalosporin resistance and the gyrA and parC genes have mutations leading to fluoroquinolone resistance. An 86 335 bp repAci6 plasmid, pA85-3, carrying bla(OXA-23) in Tn2006 in AbaR4, was shown to transfer imipenem, meropenem and ticarcillin/clavulanate resistance into a susceptible recipient. A85 also contains two small cryptic plasmids of 2.7 and 8.7 kb. A85 is sequence type ST126 (Oxford scheme) and carries a novel KL15 capsule locus and the OCL3 outer core locus. CONCLUSIONS: A85 represents a new GC1 lineage identified by the novel capsule locus but retains AbaR3 carrying genes for resistance to older antibiotics. Resistance to imipenem, meropenem and ticarcillin/clavulanate has been introduced into A85 by pA85-3, a repAci6 conjugative plasmid carrying Tn2006 in AbaR4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.