48 resultados para Conjugated dienes
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
Sodium and cesium mordenite (denoted NaM and CsM, respectively) were investigated as potential catalysts for the synthesis of polyacetylene ((CH) x). Both were successful in initiating polymerization of purified gaseous acetylene at room temperature as evidenced by Raman spectroscopic studies. The polyacetylene synthesised in this way exhibited resonance enhancement of the polyene skeletal vibrations. trans-Polyacetylene, but no cis-(CH) x, was detected. As no apparent coloration of the NaM and CsM substrates accompanied the formation of trans-(CH) x it was concluded that only small quantities of the polymer were present. The number of conjugated double bonds was estimated from the frequencies of the Raman active C-C and C=C stretching vibrations, and it was shown that the trans-(CH) x formed on CsM has a distribution of conjugation lengths ranging from less than 6 to at least 30 double bonds. The polyacetylene formed on NaM was significantly shorter and was produced in lower yields than that synthesized on CsM. "Sliced" resonance excitation profiles of polyacetylene formed on CsM were obtained using nearly 40 different excitation wavelengths and these confirmed that the adsorbed trans-(CH) x was composed of segments having a distribution of conjugated lengths. The architecture of the mordenite pore system permitted only a single polymer molecule per channel, thereby preventing cross-linking. Raman spectroscopic studies of the effects of exposure to air revealed that progressive oxidative degradation occurred with a reduction in the number of conjugated double bond
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.
Resumo:
The standard method of labelling proliferating cells uses the thymidine analogue, bromodeoxyuridine (BrdU), which incorporates into the DNA during S-phase of the cell cycle. A disadvantage of this method is that the immunochemical processing requires pre-treatment of the cells and tissue with heat or acid to reveal the antigen. This pre-treatment reduces reliability of the method and degrades the specimen, reducing the ability for multiple immuno-fluorescence labelling at high resolution. We report here the utility of a novel thymidine analogue, ethynyl deoxyuridine (EdU), detected with a fluorescent azide via the “click” chemistry reaction (the Huisgen 1,3-dipolar cycloaddition reaction of an organic azide to a terminal acetylene). The detection of EdU requires no heat or acid treatment and the incorporated EdU is covalently conjugated to fluorescent probe. The reaction is quick and compatible with fluorescence immunochemistry and other fluorescent probes. We show here that EdU is non-toxic in vitro and in vivo and can be used in place of BrdU to label cells during neurogenesis and the progeny identified at least 30 days later. The fluorescent labelling of EdU, markedly improves the detection of proliferating cells and allows concurrent high resolution fluorescence immunochemistry.
Resumo:
Platelet-derived microparticles (PMPs) which are produced during platelet activation contribute to coagulation1 and bind to traumatized endothelium in an animal model2. Such endothelial injury occurs during percutaneous transluminal coronary angioplasty (PTCA), a procedure which restores the diameter of occluded coronary arteries using balloon inflations. However, re-occlusions subsequently develop in 20-25% of patients3, although this is limited by treatment with anti-platelet glycoprotein IIb/IIIa receptor drugs such as abciximab4. However, abciximab only partially decreases the need for revascularisation5, and therefore other mechanisms appear to be involved. As platelet activation occurs during PTCA, it is likely that PMPs may be produced and contribute to restenosis. This study population consisted of 113 PTCA patients, of whom 38 received abciximab. Paired peripheral arterial blood samples were obtained from the PTCA sheath: 1) following heparinisation (baseline); and 2) subsequent to all vessel manipulation (post-PTCA). Blood was prepared with an anti-CD61 (glycoprotein IIIa) fluorescence conjugated antibody to identify PMPs using flow cytometry, and PMP results expressed as a percentage of all CD61 events. The level of PMPs increased significantly from baseline following PTCA in the without abciximab group (paired t test, P=0.019). However, there was no significant change in the level of PMPs following PTCA in patients who received abciximab. Baseline clinical characteristics between patient groups were similar, although patients administered abciximab had more complex PTCA procedures, such as increased balloon inflation pressures (ANOVA, P=0.0219). In this study, we have clearly demonstrated that the level of CD61-positive PMPs increased during PTCA. This trend has been demonstrated previously, although a low sample size prevented statistical significance being attained6. The results of our work also demonstrate that there was no increase in PMPs after PTCA with abiciximab treatment. The increased PMPs may adhere to traumatized endothelium, contributing to re-occlusion of the arteries, but this remains to be determined. References: (1) Holme PA, Brosstad F, Solum NO. Blood Coagulation and Fibrinolysis. 1995;6:302-310. (2) Merten M, Pakala R, Thiagarajan P, Benedict CR. Circulation. 1999;99:2577-2582. (3) Califf RM. American Heart Journal.1995;130:680-684. (4) Coller BS, Scudder LE. Blood. 1985;66:1456-1459. (5) Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, Sigmon K, Anderson KM, Lee KL, Willerson JT on behalf of the EPIC investigators. Lancet. 1994;343:881-886. (6) Scharf RE, Tomer A, Marzec UM, Teirstein PS, Ruggeri ZM, Harker LA. Arteriosclerosis and Thrombosis. 1992;12:1475-87.
Resumo:
The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.
Resumo:
alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
Resumo:
This thesis described the synthesis of an L-leucine conjugate of the biodegradable polymer, chitosan and its potential application for the development of controlled release nanoparticulate dry powder inhaler (DPI) formulations. The study demonstrated that the physicochemical properties of conjugated chitosan nanoparticles had favourable effects on the dispersibility and controlled release profile of a model drug. The toxicity profile of the nanoparticulate formulation revealed promising outcome for its use in pulmonary delivery. The chitosan conjugate produced in this project would be useful for the application of polymer nanoparticulate systems for efficient lung delivery of drugs.
Resumo:
There has been significant progress in the past 2 decades in the field of organic and polymer thin-film transistors. In this paper, we report a combination of stable materials, device architecture, and process conditions that resulted in a patterned gate, small channel length (<5 μm) device that possesses a scaled field-induced conductivity in air that is higher than any organic/polymer transistor reported thus far. The operating voltage is below 10 V; the on-off ratio is high; and the active materials are solution-processable. The semiconducting polymer is a new donor-acceptor polymer with furan-substituted diketopyrrolopyrrole and thienyl-vinylene-thienyl building blocks in the conjugated backbone. One of the major striking features of our work is that the patterned-gate device architecture is suitable for practical applications. We also propose a figure of merit to meaningfully compare polymer/organic transistor performance that takes into account mobility and operating voltage. With this figure of merit, we compare leading organic and polymer transistors that have been hitherto reported. The material and device architecture have shown very high mobility and low operating voltage for such short channel length (below 5 μm) organic/polymer transistors.
Resumo:
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.
Resumo:
Organic light emitting diodes (OLEDs), as an emerging technology for display and solid state lighting application, have many advantages including self-emission, lightweight, flexibility, low driving voltage, low power consumption, and low production cost. With the advancement of light emitting materials development and device architecture optimization, mobile phones and televisions based on OLED technology are already in the market. However, to obtain efficient, stable and pure blue emission than producing lower-energy colors is still one of the important subjects of these challenges. Full color and pure white light can be achieved only having stable blue emitting materials. To address this issue, significant effort has been devoted to develop novel blue light emitting materials in the past decade aiming at further improving device efficiency, color quality of emission light, and device lifetime. This review focuses on recent efforts of synthesis and device performance of small molecules, oligomers and polymers for blue emission of organic electroluminescent devices.
Resumo:
The amount of metal residues from organometallic reagents used in preparation of poly(9,9-dioctylfluorene) by palladium catalysed Suzuki and nickel-induced Yamamoto polycondensations have been determined, and their effect upon the behaviour of the polymer in field-effect transistors (FETs) has been measured. The metal levels from material polymerised by Suzuki method were found to be much higher than from that made by the Yamamoto procedure. Simple treatment of the polymers with suitable metal trapping reagents lowered the metal levels significantly, with EDTA giving best results for nickel and triphenylphosphine for palladium. Comparison of the behaviour of FETs using polyfluorenes with varying levels of metal contamination, showed that the metal residues have little effect upon the mobility values, but often affect the degree of hysteresis, possibly acting as charge traps. Satisfactory device performances were obtained from polymer with palladium levels of 2000 μg/g suggesting that complete removal of metal residues may not be necessary for satisfactory device performance.
Resumo:
A fused aromatic furan-substituted diketopyrrolopyrrole and novel diphenylfumaronitrile conjugated building blocks are used for the synthesis of an alternating copolymer (DPFN-DPPF) via Suzuki polycondensation. In this paper, the first attempt to use the diphenylfumaronitrile building block for the synthesis of conjugated polymer is described. The number-average and weight-average molecular weights calculated for DPFN-DPPF are 20?661 and 66?346 g mol-1, respectively. The optical bandgap calculated for DPFN-DPPF is 1.53 eV whereas the highest occupied molecular orbital (HOMO) value calculated by photoelectron spectroscopy in air (PESA) is 5.50 eV. The calculated HOMO value is lower, which is suitable for stable organic electronic devices. DPFN-DPPF polymer is used as an active layer in bottom-contact bottom-gate organic thin-film transistor devices and the thin film exhibits a hole mobility of 0.20 cm2 V-1 s-1 in air.
Resumo:
The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.