502 resultados para Complex needs
Resumo:
Assessment for Learning is a pedagogical practice with anticipated gains of increased student motivation, mastery and autonomy as learners develop their capacity to monitor and plan their own learning progress. Assessment for Learning (AfL) differs from Assessment of learning in its timing, occurring within the regular flow of learning rather than end point, in its purpose of improving student learning rather than summative grading and in the ownership of the learning where the student voice is heard in judging quality. Since Black and Wiliam (1998) highlighted the achievement gains that AfL practices seem to bring to all learners in classrooms, it has become part of current educational policy discourse in Australia, yet teacher adoption of the practices is not a straightforward implementation of techniques within an existing classroom repertoire. As can be seen from the following meta-analysis, recent research highlights a more complex interrelationship between teacher and student beliefs about learning and assessment, and the social and cultural interactions in and contexts of the classroom. More research is needed from a sociocultural perspective that allows meaning to emerge from practice. Before another policy push, we need to understand better the many factors within the assessment relationship. We need to hear from teachers and students through long-term AfL case studies both to inform AfL theory and to shed light on the complexities of pedagogical change for enhancing learner autonomy.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.
Resumo:
This study explored the health needs, familial and social problems of Thai migrants in a local community in Brisbane, Australia. Five focus groups with Thai migrants were conducted. The qualitative data were examined using thematic content analysis that is specifically designed for focus group analysis. Four themes were identified: (1) positive experiences in Australia, (2) physical health problems, (3) mental health problems, and (4) familial and social health problems. This study revealed key health needs related to chronic disease and mental health, major barriers to health service use, such as language skills, and facilitating factors, such as the Thai Temple. We concluded that because the health needs, familial and social problems of Thai migrants were complex and culture bound, the development of health and community services for Thai migrants needs to take account of the ways in which Thai culture both negatively impacts health and offer positive solutions to problems.
Resumo:
Increases in functionality, power and intelligence of modern engineered systems led to complex systems with a large number of interconnected dynamic subsystems. In such machines, faults in one subsystem can cascade and affect the behavior of numerous other subsystems. This complicates the traditional fault monitoring procedures because of the need to train models of the faults that the monitoring system needs to detect and recognize. Unavoidable design defects, quality variations and different usage patterns make it infeasible to foresee all possible faults, resulting in limited diagnostic coverage that can only deal with previously anticipated and modeled failures. This leads to missed detections and costly blind swapping of acceptable components because of one’s inability to accurately isolate the source of previously unseen anomalies. To circumvent these difficulties, a new paradigm for diagnostic systems is proposed and discussed in this paper. Its feasibility is demonstrated through application examples in automotive engine diagnostics.
Resumo:
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Resumo:
The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Cane fibre content has increased over the past ten years. Some of that increase can be attributed to new varieties selected for release. This paper reviews the existing methods for quantifying the fibre characteristics of a variety, including fibre content and fibre quality measurements – shear strength, impact resistance and short fibre content. The variety selection process is presented and it is reported that fibre content has zero weighting in the current selection index. An updated variety selection approach is proposed, potentially replacing the existing selection process relating to fibre. This alternative approach involves the use of a more complex mill area level model that accounts for harvesting, transport and processing equipment, taking into account capacity, efficiency and operational impacts, along with the end use for the bagasse. The approach will ultimately determine a net economic value for the variety. The methodology lends itself to a determination of the fibre properties that have a significant impact on the economic value so that variety tests can better target the critical properties. A low-pressure compression test is proposed as a good test to provide an assessment of the impact of a variety on milling capacity. NIR methodology is proposed as a technology to lead to a more rapid assessment of fibre properties, and hence the opportunity to more comprehensively test for fibre impacts at an earlier stage of variety development.
Resumo:
Wellbeing is an area that has gained increased global focus, particularly when considering children’s lives. With the growing focus on children’s wellbeing, it is apparent that this is an important aspect that is being considered in the policy and provision designed for children. The decision-making surrounding wellbeing provision for children typically occurs without the direct input of the children that these services are designed to benefit. With the children’s capacities being variably considered in wider society, opportunities for children to participate in decision-making on matters that affect them are often limited. The absence of children’s perspectives on matters that affect their lives, such as wellbeing, reveal that adults may be missing a key perspective when seeking to understand and cater for children’s wellbeing needs. This article outlines the results of a study that investigated how children aged 8 to 12 years o age (tweens) defined and conceptualised wellbeing. This article proposes that children can be included in the conceptualisation and development of policy and provision designed to benefit them and argues for increased presence of the voice and participation of children in wider societal initiatives.
Resumo:
Introduction Systematic reviews, through the synthesis of multiple primary research studies, can be powerful tools in enabling evidence-informed public health policy debate, development and action. In seeking to optimize the utility of these reviews, it is important to understand the needs of those using them. Previous work has emphasized that researchers should adopt methods that are appropriate to the problems that public health decision-makers are grappling with, as well as to the policy context in which they operate.1,2 Meeting these demands poses significant methodological challenges for review authors and prompts a reconsideration of the resources, training and support structures available to facilitate the efficient and timely production of useful, comprehensive reviews. The Cochrane Public Health Group (CPHG) was formed in 2008 to support reviews of complex, upstream public health topics. The majority of CPHG authors are from the UK, which has historically been at the forefront of efforts to promote the production and use of systematic reviews of research relevant to public health decision-makers. The UK therefore provides a suitably mature national context in which to examine (i) the current and future demands of decision-makers to increase the use, value and impact of evidence syntheses; (ii) the implications this has for the scope and methods of reviews and (iii) the required action to build and support capacity to conduct such reviews.
Resumo:
Objective People with chronic liver disease, particularly those with decompensated cirrhosis, experience several potentially debilitating complications that can have a significant impact on activities of daily living and quality of life. These impairments combined with the associated complex treatment mean that they are faced with specific and high levels of supportive care needs. We aimed to review reported perspectives, experiences and concerns of people with chronic liver disease worldwide. This information is necessary to guide development of policies around supportive needs screening tools and to enable prioritisation of support services for these patients. Design Systematic searches of PubMed, MEDLINE, CINAHL and PsycINFO from the earliest records until 19 September 2014. Data were extracted using standardised forms. A qualitative, descriptive approach was utilised to analyse and synthesise data. Results The initial search yielded 2598 reports: 26 studies reporting supportive care needs among patients with chronic liver disease were included, but few of them were patient-reported needs, none used a validated liver disease-specific supportive care need assessment instrument, and only three included patients with cirrhosis. Five key domains of supportive care needs were identified: informational or educational (eg, educational material, educational sessions), practical (eg, daily living), physical (eg, controlling pruritus and fatigue), patient care and support (eg, support groups), and psychological (eg, anxiety, sadness). Conclusions While several key domains of supportive care needs were identified, most studies included hepatitis patients. There is a paucity of literature describing the supportive care needs of the chronic liver disease population likely to have the most needs—namely those with cirrhosis. Assessing the supportive care needs of people with chronic liver disease have potential utility in clinical practice for facilitating timely referrals to support services.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.