187 resultados para Common carrier
Resumo:
In this paper, the problems of three carrier phase ambiguity resolution (TCAR) and position estimation (PE) are generalized as real time GNSS data processing problems for a continuously observing network on large scale. In order to describe these problems, a general linear equation system is presented to uniform various geometry-free, geometry-based and geometry-constrained TCAR models, along with state transition questions between observation times. With this general formulation, generalized TCAR solutions are given to cover different real time GNSS data processing scenarios, and various simplified integer solutions, such as geometry-free rounding and geometry-based LAMBDA solutions with single and multiple-epoch measurements. In fact, various ambiguity resolution (AR) solutions differ in the floating ambiguity estimation and integer ambiguity search processes, but their theoretical equivalence remains under the same observational systems models and statistical assumptions. TCAR performance benefits as outlined from the data analyses in some recent literatures are reviewed, showing profound implications for the future GNSS development from both technology and application perspectives.
Resumo:
This paper analyzes the common factor structure of US, German, and Japanese Government bond returns. Unlike previous studies, we formally take into account the presence of country-specific factors when estimating common factors. We show that the classical approach of running a principal component analysis on a multi-country dataset of bond returns captures both local and common influences and therefore tends to pick too many factors. We conclude that US bond returns share only one common factor with German and Japanese bond returns. This single common factor is associated most notably with changes in the level of domestic term structures. We show that accounting for country-specific factors improves the performance of domestic and international hedging strategies.
Resumo:
China is now seen as arguably, the next economic giant of the 21st century. From a country closed in the past to the external world, the Chinese market now presents as one of the most lucrative in the world economy. One area that has drawn increasing international interest is education - it has been estimated that by 2020 there will be 25 million excess demands for higher education places that the Chinese tertiary educational system cannot meet. Many overseas institutions have developed programs to cater for this immense potential market. In 2000 the Law Faculty of the University of Technology, Sydney (UTS)introduced a new postgraduate program specifically targeting the Chinese market. This paper is a brief assessment of the program - it examines general issues in the pedagogical delivery of programs in LOTE (Language Other Than English) and the use of 'proxies' in the delivery of LOTE programs. The paper concludes that while the UTS program demonstrates that it is feasible to use proxy lecturers or interpreters in the delivery of programs in LOTE, the exercise entails significant problems that can undermine the integrity of such programs.
Resumo:
This article reports the details of a research on novel design in the field of semitrailer sector and discuss design by hazard prevention techniques. The novel design made addresses occupational health and safety (OHS)concerns of fall from heights. The research includes a detailed survey of national data sources to examine the fatalities caused due to fall from heights in car carriers. The study investigates OHS recommendations in Australia for semitrailer sector. Often injuries are caused due to drivers working above the 1.5 meter height for loading, unloading of the cars, moving the decks up, down, strapping the cars, and slipperly. The new design is developed using latest computer aided design and engineeing (CAD, CAE), product data management (PDM), virtual design process (VDP). The new car carrier design excels in reducing the risks of injuries to drivers and new bench mark for OHS standards. The new design has all the decks operated with hydraulics and uses unique ratchet lock mechanism (fool proof design) and loading happens at a safe working height (below 1.5 meter). All the cars are strapped on the safe working height, and then car desks operated hydraulically to transfer them to the required position. This also includes the car on the prime mover, which shuttles across from one deck to other using hydraulic and rack-pinion mechanisms. The novel design car carrier solves the problem of falls from height: next step would be to transfer this technology across other similar effected sectors.
Resumo:
Most statistical methods use hypothesis testing. Analysis of variance, regression, discrete choice models, contingency tables, and other analysis methods commonly used in transportation research share hypothesis testing as the means of making inferences about the population of interest. Despite the fact that hypothesis testing has been a cornerstone of empirical research for many years, various aspects of hypothesis tests commonly are incorrectly applied, misinterpreted, and ignored—by novices and expert researchers alike. On initial glance, hypothesis testing appears straightforward: develop the null and alternative hypotheses, compute the test statistic to compare to a standard distribution, estimate the probability of rejecting the null hypothesis, and then make claims about the importance of the finding. This is an oversimplification of the process of hypothesis testing. Hypothesis testing as applied in empirical research is examined here. The reader is assumed to have a basic knowledge of the role of hypothesis testing in various statistical methods. Through the use of an example, the mechanics of hypothesis testing is first reviewed. Then, five precautions surrounding the use and interpretation of hypothesis tests are developed; examples of each are provided to demonstrate how errors are made, and solutions are identified so similar errors can be avoided. Remedies are provided for common errors, and conclusions are drawn on how to use the results of this paper to improve the conduct of empirical research in transportation.