24 resultados para Collector of recyclables
Resumo:
We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.
Resumo:
Electrospun scaffolds manufactured using conventional electrospinning configurations have an intrinsic thickness limitation, due to a charge build-up at the collector. To overcome this limitation, an electrostatic lens has been developed that, at the same relative rate of deposition, focuses the polymer jet onto a smaller area of the collector, resulting in the fabrication of thick scaffolds within a shorter period of time. We also observed that a longer deposition time (up to 13 h, without the intervention of the operator) could be achieved when the electrostatic lens was utilised, compared to 9–10 h with a conventional processing set-up and also showed that fibre fusion was less likely to occur in the modified method. This had a significant impact on the mechanical properties, as the scaffolds obtained with the conventional process had a higher elastic modulus and ultimate stress and strain at short times. However, as the thickness of the scaffolds produced by the conventional electrospinning process increased, a 3-fold decrease in the mechanical properties was observed. This was in contrast to the modified method, which showed a continual increase in mechanical properties, with the properties of the scaffold finally having similar mechanical properties to the scaffolds obtained via the conventional process at longer times. This “focusing” device thus enabled the fabrication of thicker 3-dimensional electrospun scaffolds (of thicknesses up to 3.5 mm), representing an important step towards the production of scaffolds for tissue engineering large defect sites in a multitude of tissues.
Resumo:
Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.
Resumo:
In view of the growing global demand for energy and concern expressed for environmental degradation, a clean and "free" energy source, such as solar energy, has been receiving greater attention in recent years for various applications using different techniques. The Direct Expansion Solar Assisted Heat Pump (DX-SAHP) principle is one of the most promising techniques as it makes use of both solar and ambient energy. As the system has capability to function at low temperatures, it has the potential to operate at night in the tropics. The system utilizes multi-effect distillation (MED) principle for the conversion of seawater to fresh water. An experimental setup of the DX-SAHP desalination system has been built at the Department of Mechanical Engineering, National University of Singapore (NUS). This system uses two types of flat-plate solar collectors. One is called evaporator-collector, where no glazing is used, and the efficiency varies between 80 and 90%. The other type of collector is single-glazed, where the maximum efficiency is about 60%, and it is used for feed water heating. For the heat pump cycle, refrigerant R134a is used. The present study provides a comprehensive analyses and performance evaluation of this system under different operating and meteorological conditions of Singapore. The Coefficient of Performance (COP) of the heat pump system reached a maximum value of 10. For a single effect of desalination, the system shows a Performance Ratio (PR) of around 1.3.
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibres. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fibre deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study we introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fibre deposition control. We produced and characterised several 90° cross-hatched fibre scaffolds using a range of needle/collector plate voltages. Fibre thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. We also produced ordered scaffolds up to 200 layers thick (fibre spacing 1 mm, diameter 40 μm) and characterised structure in terms of three distinct zones; ordered, semi-ordered and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilising polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.
Resumo:
Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.
Resumo:
The drying of fruit and vegetables is a subject of great importance. Dried fruit and vegetables have gained commercial importance, and their growth on a commercial scale has become an important sector of the agricultural industry. However, food drying is one of the most energy intensive processes of the major industrial process and accounts for up to 15 % of all industrial energy usage. Due to increasingly high electricity prices and environmental concern, a dryer using traditional energy sources is not a feasible option anymore. Therefore, an alternative/renewable energy source is needed. In this regard, an integrated solar drying system that includes highly efficient double-pass counter flow v-groove solar collector, conical-shaped rock-bed thermal storage, auxiliary heater, the centrifugal fan and the drying chamber has been designed and constructed. Mathematical model for all the individual components as well as an integrated model combining all components of the drying system has been developed. Mathematical equations were solved using MATLAB program. This paper presents the analytical model and key finding of the simulation.
Resumo:
Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.