71 resultados para Classification of sciences.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To demonstrate properties of the International Classification of the External Cause of Injury (ICECI) as a tool for use in injury prevention research. Methods: The Childhood Injury Prevention Study (CHIPS) is a prospective longitudinal follow up study of a cohort of 871 children 5–12 years of age, with a nested case crossover component. The ICECI is the latest tool in the International Classification of Diseases (ICD) family and has been designed to improve the precision of coding injury events. The details of all injury events recorded in the study, as well as all measured injury related exposures, were coded using the ICECI. This paper reports a substudy on the utility and practicability of using the ICECI in the CHIPS to record exposures. Interrater reliability was quantified for a sample of injured participants using the Kappa statistic to measure concordance between codes independently coded by two research staff. Results: There were 767 diaries collected at baseline and event details from 563 injuries and exposure details from injury crossover periods. There were no event, location, or activity details which could not be coded using the ICECI. Kappa statistics for concordance between raters within each of the dimensions ranged from 0.31 to 0.93 for the injury events and 0.94 and 0.97 for activity and location in the control periods. Discussion: This study represents the first detailed account of the properties of the ICECI revealed by its use in a primary analytic epidemiological study of injury prevention. The results of this study provide considerable support for the ICECI and its further use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-sided classifier for a given class of languages converges to 1 on every language from the class and outputs 0 infinitely often on languages outside the class. A two-sided classifier, on the other hand, converges to 1 on languages from the class and converges to 0 on languages outside the class. The present paper investigates one-sided and two-sided classification for classes of recursive languages. Theorems are presented that help assess the classifiability of natural classes. The relationships of classification to inductive learning theory and to structural complexity theory in terms of Turing degrees are studied. Furthermore, the special case of classification from only positive data is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The XML Document Mining track was launched for exploring two main ideas: (1) identifying key problems and new challenges of the emerging field of mining semi-structured documents, and (2) studying and assessing the potential of Machine Learning (ML) techniques for dealing with generic ML tasks in the structured domain, i.e., classification and clustering of semi-structured documents. This track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The first five editions have been summarized in previous editions and we focus here on the 2010 edition. INEX 2010 included two tasks in the XML Mining track: (1) unsupervised clustering task and (2) semi-supervised classification task where documents are organized in a graph. The clustering task requires the participants to group the documents into clusters without any knowledge of category labels using an unsupervised learning algorithm. On the other hand, the classification task requires the participants to label the documents in the dataset into known categories using a supervised learning algorithm and a training set. This report gives the details of clustering and classification tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section (‘loopy’). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many existing schemes for malware detection are signature-based. Although they can effectively detect known malwares, they cannot detect variants of known malwares or new ones. Most network servers do not expect executable code in their in-bound network traffic, such as on-line shopping malls, Picasa, Youtube, Blogger, etc. Therefore, such network applications can be protected from malware infection by monitoring their ports to see if incoming packets contain any executable contents. This paper proposes a content-classification scheme that identifies executable content in incoming packets. The proposed scheme analyzes the packet payload in two steps. It first analyzes the packet payload to see if it contains multimedia-type data (such as . If not, then it classifies the payload either as text-type (such as or executable. Although in our experiments the proposed scheme shows a low rate of false negatives and positives (4.69% and 2.53%, respectively), the presence of inaccuracies still requires further inspection to efficiently detect the occurrence of malware. In this paper, we also propose simple statistical and combinatorial analysis to deal with false positives and negatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People interact with mobile computing devices everywhere, while sitting, walking, running or even driving. Adapting the interface to suit these contexts is important, thus this paper proposes a simple human activity classification system. Our approach uses a vector magnitude recognition technique to detect and classify when a person is stationary (or not walking), casually walking, or jogging, without any prior training. The user study has confirmed the accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team of international entrepreneurship researchers. In this vignette Dr Maria Kaya and Associate Professor Paul Steffens consider both the classification of musicians and their use of online social networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridges are currently rated individually for maintenance and repair action according to the structural conditions of their elements. Dealing with thousands of bridges and the many factors that cause deterioration, makes this rating process extremely complicated. The current simplified but practical methods are not accurate enough. On the other hand, the sophisticated, more accurate methods are only used for a single or particular bridge type. It is therefore necessary to develop a practical and accurate rating system for a network of bridges. The first most important step in achieving this aim is to classify bridges based on the differences in nature and the unique characteristics of the critical factors and the relationship between them, for a network of bridges. Critical factors and vulnerable elements will be identified and placed in different categories. This classification method will be used to develop a new practical rating method for a network of railway bridges based on criticality and vulnerability analysis. This rating system will be more accurate and economical as well as improve the safety and serviceability of railway bridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.