468 resultados para Chaos and Fractals
Resumo:
This research proposed a new framework for safety culture and examined the influence that culture has on safety in the heavy vehicle industry. The results gave evidence for an industry wide culture, allowing future safety interventions to be designed in a culturally-relevant manner. Designing culturally-relevant interventions may maximise their effectiveness and reduce the levels of resistance to safety that have been evident in past years.
Resumo:
The use of collaborative assignments for assessment is a risky undertaking for students and course designers. Yet the benefits, in terms of core learning outcomes, competencies, collaborative sense making and student involvement, suggest that the effort is worthwhile. Formal descriptions and rules do little to ameliorate the perception of risk and increased anxiety by students. (Ryan, 2007). BEB100 Introducing Professional Learning is a faculty-wide foundation unit with over 1300 students from 19 disciplines across the Faculty of the Built Environment and Engineering (“BEE”) at the Queensland University of Technology (“QUT”), Brisbane, Australia. Finding order in chaos outlines the approach and justification, assessment criteria, learning resources, teamwork tools, tutorial management, communication strategies, 2007-09 Student Learning Experience Survey results, annual improvements, findings and outcomes.
Resumo:
This thesis examines the changing relationships between television, politics, audiences and the public sphere. Premised on the notion that mediated politics is now understood “in new ways by new voices” (Jones, 2005: 4), and appropriating what McNair (2003) calls a “chaos theory” of journalism sociology, this thesis explores how two different contemporary Australian political television programs (Sunrise and The Chaser’s War on Everything) are viewed, understood, and used by audiences. In analysing these programs from textual, industry and audience perspectives, this thesis argues that journalism has been largely thought about in overly simplistic binary terms which have failed to reflect the reality of audiences’ news consumption patterns. The findings of this thesis suggest that both ‘soft’ infotainment (Sunrise) and ‘frivolous’ satire (The Chaser’s War on Everything) are used by audiences in intricate ways as sources of political information, and thus these TV programs (and those like them) should be seen as legitimate and valuable forms of public knowledge production. It therefore might be more worthwhile for scholars to think about, research and teach journalism in the plural: as a series of complementary or antagonistic journalisms, rather than as a single coherent entity.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Flood-besieged Brisbane residents were forced to watch the monster river consume their homes and livelihoods then see the receding water leave behind a putrid, tar-like sludge. The rains formed by multiple low pressure systems over Central Queensland caused chaos over the Christmas and New Year break for many parts of Queensland.
Resumo:
This chapter describes current trends in the global media environment, with a focus on their implications for the management of public agendas and political processes. It assesses the extent to which trends such as the growth of the blogosphere, "citizen journalism," and other forms if user-generated content, have complicated and problematized news and agenda management as engaged in by both media and political elites. It argues that, in large part due to the rise of the internet and the proliferation if online producers of information and commentary, alongside 24-hour news channels such as CNN and Al Jazeera, political and social actors today face a much more complex, chaotic communication environment than ever bifore, an environment characterized as one of cultural chaos. Having outlined the roots of this trend in the emergence of an expanded, globalized public sphere, the chapter goes on to ask if elite control over the political agenda has been eroded, and if it has, what the consequences for governmmt and the exercise if power might be. Can authoritarian regimes in China, the Middle East, and elsewhere survive the onset if internet-fueled global journalism, for example? In a political environment where public opinion is driven and buffeted by news coverage if unprecedented speed and volume, can democratic governments retain sufficient control over decision- and policy-making processes to enable competent social administration al'ld political management? Can the citizens of contemporary democracies use the emerging media environment to enhance elite accountability and strengthen the democratic process? The chapter concludes that the changing global media environment has the potmtial to strengthen democratic processes, though there is no sil'lgle template for the impact of the internet and other new media on specific countries.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
Across Australia in 1968, students demonstrating against the Vietnam War engaged in confrontational behaviour. The metropolitan daily newspapers,the most important source of news for most people, enthusiastically reported the scenes. The demonstrations were exciting. Sensational headlines and photographs captured the interest of readers and influenced their opinions. But radical opposition to government policies at the time was not limited to university students opposing the Vietnam War. Teachers had become increasingly critical of conditions in schools, with Victorian secondary school teachers having stopped work on a number of occasions since 1965. In October 1968, both primary and secondary school teachers in New South Wales participated in eastern Australia’s first state-wide teachers’ strike. As Sydney’s Sun commented on 1 October 1968, “The teachers’ strike threw the ... education system into chaos ... A huge proportion of the State’s 2764 schools were silent and empty.” Similarities with the anti-war demonstrations were obvious. Although not as confrontational, the New South Wales teachers’ strike was a publicity-seeking action. This examination of the teachers’ more restrained, but more effective, approach to challenging government policies provides a new voice and vision to our understandings of the diverse nature of radicalism in Australia in the 1960s.