226 resultados para Cardiac-surgery
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
Clinical information systems have become important tools in contemporary clinical patient care. However, there is a question of whether the current clinical information systems are able to effectively support clinicians in decision making processes. We conducted a survey to identify some of the decision making issues related to the use of existing clinical information systems. The survey was conducted among the end users of the cardiac surgery unit, quality and safety unit, intensive care unit and clinical costing unit at The Prince Charles Hospital (TPCH). Based on the survey results and reviewed literature, it was identified that support from the current information systems for decision-making is limited. Also, survey results showed that the majority of respondents considered lack in data integration to be one of the major issues followed by other issues such as limited access to various databases, lack of time and lack in efficient reporting and analysis tools. Furthermore, respondents pointed out that data quality is an issue and the three major data quality issues being faced are lack of data completeness, lack in consistency and lack in data accuracy. Conclusion: Current clinical information systems support for the decision-making processes in Cardiac Surgery in this institution is limited and this could be addressed by integrating isolated clinical information systems.
Resumo:
This research was a step forward in developing a data integration framework for Electronic Health Records. The outcome of the research is a conceptual and logical Data Warehousing model for integrating Cardiac Surgery electronic data records. This thesis investigated the main obstacles for the healthcare data integration and proposes a data warehousing model suitable for integrating fragmented data in a Cardiac Surgery Unit.
Resumo:
Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.
Resumo:
BACKGROUND: Head-of-bed elevation (HOBE) has been shown to assist in reducing respiratory complications associated with mechanical ventilation; however, there is minimal research describing changes in end-expiratory lung volume. This study aims to investigate changes in end-expiratory lung volume in a supine position and 2 levels of HOBE. METHODS: Twenty postoperative cardiac surgery subjects were examined using electrical impedance tomography. End-expiratory lung impedance (EELI) was recorded as a surrogate measurement of end-expiratory lung volume in a supine position and at 20° and then 30°. RESULTS: Significant increases in end-expiratory lung volume were seen at both 20° and 30° HOBE in all lung regions, except the anterior, with the largest changes from baseline (supine) seen at 30°. From baseline to 30° HOBE, global EELI increased by 1,327 impedance units (95% CI 1,080–1,573, P < .001). EELI increased by 1,007 units (95% CI 880–1,134, P < .001) in the left lung region and by 320 impedance units (95% CI 188–451, P < .001) in the right lung. Posterior increases of 1,544 impedance units (95% CI 1,405–1,682, P < .001) were also seen. EELI decreased anteriorly, with the largest decreases occurring at 30° (−335 impedance units, 95% CI −486 to −183, P < .001). CONCLUSIONS: HOBE significantly increases global and regional end-expiratory lung volume; therefore, unless contraindicated, all mechanically ventilated patients should be positioned with HOBE.
Resumo:
discusses fentanyl, alfentanil, sufentanil, and remifentanil which are synthetic opioid analgesics with high affinity for the mu opioid receptor. They have been widely adopted in anaesthetic practice for various surgical procedures (e.g. in cardiac surgery) and for long-term analgesia and sedation. Important pharmacokinetic differences between these analgesics have been described, and this chapter addresses how the pharmacokinetic profile of each analgesic is affected by many factors, including patient age, plasma protein content, acid–base balance status, cardiopulmonary bypass, changes in hepatic blood flow, and the co-administration of other drugs which compete for plasma protein carriers and metabolic pathways, although their profile is not significantly affected by renal insufficiency or compensated hepatic dysfunction, which has major clinical implications.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
Background: There are inequalities in geographical access and delivery of health care services in Australia, particularly for cardiovascular disease (CVD), Australia's major cause of death. Analyses and models that can inform and positively influence strategies to augment services and preventative measures are needed. The Cardiac-ARIA project is using geographical spatial technology (GIS) to develop a national index for each of Australia's 13,000 population centres. The index will describe the spatial distribution of CVD health care services available to support populations at risk, in a timely manner, after a major cardiac event. Methods: In the initial phase of the project, an expert panel of cardiologists and an emergency physician have identified key elements of national and international guidelines for management of acute coronary syndromes, cardiac arrest, life-threatening arrhythmias and acute heart failure, from the time of onset (potentially dial 000) to return from the hospital to the community (cardiac rehabilitation). Results: A systematic search has been undertaken to identify the geographical location of, and type of, cardiac services currently available. This has enabled derivation of a master dataset of necessary services, e.g. telephone networks, ambulance, RFDS, helicopter retrieval services, road networks, hospitals, general practitioners, medical community centres, pathology services, CCUs, catheterisation laboratories, cardio-thoracic surgery units and cardiac rehabilitation services. Conclusion: This unique and innovative project has the potential to deliver a powerful tool to both highlight and combat the burden of disease of CVD in urban and regional Australia.
Resumo:
Percutaneous coronary interventions have increased 50% in Australia, yet vascular and cardiac complications remain ongoing outcome issues for patients. Managing complications is confounded by reduced length of patient stay, yet is an integral component of a cardiac nurses’ scope of practice. The aim of this study was to highlight in and out of hospital vascular and cardiac complications, for twelve months post patient discharge after PCI. Prospective data was collected from the hospital angioplasty database from 1089 consecutive patients who had PCI procedures from 1 January 2005 to 31 December 2006. In hospital vascular complications were reported by 391 (35%) of the 1089 patients, following PCI. Of these, 22.4% had haemorrhage only, 7.1% haematoma only. Cardiac complications in hospital were, one death (0.09%) following PCI, three deaths (0.27%) during the same admission and no incidence of myocardial infarction or bypass surgery. Patients who had PCI in 2005 (525) were telephone followed up after discharge at one and twelve months. Surprisingly, ongoing vascular outcomes were noted, with a 2.5% incidence at one month and 4% at 12 months. Cardiac complications were also identified, 51 (9.7%) patients requiring readmission for repeat angiogram, 19 (3.6%) a repeat PCI and 7 (1.3%) patients undergoing bypass surgery. This review highlights that vascular and cardiac problems are ongoing issues for PCI patients both in and out of hospital. The results suggest that cardiac nurses focus more on improving the monitoring and discharge care of patients and families for recovery after PCI.
Resumo:
The use of allograft bone is increasingly common in orthopaedic reconstruction procedures. The optimal method of preparation of allograft bone is subject of great debate. Proponents of fresh-frozen graft cite improved biological and biomechanical characteristics relative to irradiated material, whereas fear of bacterial or viral transmission warrants some to favour irradiated graft. Careful review of the literature is necessary to appreciate the influence of processing techniques on bone quality. Whereas limited clinical trials are available to govern the selection of appropriate bone graft, this review presents the argument favouring the use of fresh-frozen bone allograft as compared to irradiated bone.