110 resultados para Carbónico inferior
Resumo:
Visual impairment is an important contributing factor in falls among older adults, which is one of the leading causes of injury and injury-related death in this population. Visual impairment is also associated with greater disability among older adults, including poorer health-related quality of life, increased frailty and reduced postural stability. The majority of this evidence, however, is based on measures of central visual function, rather than peripheral visual function. As such, there is comparatively limited research on the associations between peripheral visual function, disability and falls, and even fewer studies involving older adults with specific diseases which affect peripheral visual function, the most common of which is glaucoma. Glaucoma is one of the leading causes of irreversible vision loss among older adults, affecting around 3 per cent of adults aged over 60 years. The condition is characterised by retinal nerve fibre loss, primarily affecting peripheral visual function. Importantly, the number of older adults with glaucomatous visual impairment is projected to increase as the ageing population grows. The first component of the thesis examined the cross-sectional association between glaucomatous visual impairment and health-related quality of life (Study 1a), functional status (Study 1b) and postural stability (Study 1c) among older adults. A cohort of 74 community-dwelling adults with glaucoma (mean age 74.2 ± 5.9 years) was recruited and completed a baseline assessment. A number of visual function measures was assessed, including central visual function (visual acuity and contrast sensitivity), motion sensitivity, retinal nerve fibre analysis and monocular and binocular visual field measures (monocular 24-2 and binocular integrated visual fields (IVF): IVF-60 and IVF-120). The analyses focused on the associations between the outcomes measures and severity and location of visual field loss, as this is the primary visual function affected by glaucoma. In Study 1a, we examined the association between visual field loss and health-related quality of life, measured by the Short Form 36-item Health Survey (SF-36). Greater binocular visual field loss, on both IVF measures, was associated with lower SF-36 physical component scores, adjusted for age and gender (Pearson's r =|0.32| to |0.36|, p<0.001). Furthermore, inferior visual field loss was more strongly associated with the SF-36 physical component than superior field loss. No association was found between visual field loss and SF-36 mental component scores. The association between visual field loss and functional status was examined in Study 1b. Functional status outcomes measures included a physical activity questionnaire (Physical Activity Scale for the Elderly, PASE), performance tests (six-minute walk test, timed up and go test and lower leg strength) and an overall functional status score. Significant, but weak, correlations were found between binocular visual field loss and PASE and overall functional status scores, adjusted for age and gender (Pearson's r =|0.24| to |0.33|, p<0.05). Greater inferior visual field loss, independent of superior visual field loss, was significantly associated with poorer physical performance results and lower overall functional status scores. In Study 1c, we examined the association between visual field loss and postural stability, using a swaymeter device which recorded body movement during four conditions: eyes open and closed, on a firm and foam surface. Greater binocular visual field loss was associated with increased postural sway, both on firm and foam surfaces, independent of age and gender (Pearson’s r =|0.44| to |0.46|, p <0.001). Furthermore, inferior visual field was a stronger contributor to postural stability, more so than the superior visual field, particularly on the foam condition with the eyes open. Greater visual field loss was associated with a reduction in the visual contribution to postural sway, which underlies the observed association with postural sway. The second component of the thesis examined the association between severity and location of visual field loss and falls during a 12-month longitudinal follow-up. The number of falls was assessed prospectively using monthly fall calendars. Of the 71 participants who successfully completed the follow up (mean age 73.9 ± 5.7 years), 44% reported one or more falls, and around 20% reported two or more falls. After adjusting for age and gender, every 10 points missed on the IVF-120 increased the rate of falls by 25% (rate ratio 1.25, 95% confidence interval 1.08 - 1.44) or every 5dB reduction in IVF-60 increased the rate of falls by 47% (rate ratio 1.47, 95% confidence interval 1.16 - 1.87). Inferior visual field loss was a significant predictor of falls, more so than superior field loss, highlighting the importance of the inferior visual field area in safe and efficient navigation. Further analyses indicated that postural stability, more so than functional status, may be a potential mediating factor in the relationship between visual field loss and falls. Future research is required to confirm this causal pathway. In addition, the use of topical beta-blocker medications was not associated with an increased rate of falls in this cohort, compared with the use of other topical anti-glaucoma medications. In summary, greater binocular visual field loss among older adults with glaucoma was associated with poorer health-related quality of life in the physical domain, reduced functional status, greater postural instability and higher rates of falling. When the location of visual field loss was examined, inferior visual field loss was consistently more strongly associated with these outcomes than superior visual field loss. Insights gained from this research improve our understanding of the association between glaucomatous visual field loss and disability, and its link with falls among older adults. The clinical implications of this research include the need to include visual field screening in falls risk assessments among older adults and to raise awareness of these findings to eye care practitioners and adults with glaucoma. The findings also assist in developing further research to examine strategies to reduce disability and prevent falls among older adults with glaucoma to promote healthy ageing and independence for these individuals.
Resumo:
In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.
Resumo:
The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.
Resumo:
Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.
Resumo:
Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and positions the file signatures model in the class of Vector Space retrieval models.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
To the Editor: Chaudhry et al. suggest that enhanced support in the use of a telephone-based interactive voice-response system for patients recently discharged after worsening heart failure does not improve outcomes. This finding is broadly consistent with previous systematic reviews of telephone support1 and contrasts with the substantial effect observed with home telemonitoring of vital signs in similar populations.1 The treatment of patients in the control group was excellent, but unrepresentative of usual clinical care and not inferior to the treatment of patients receiving enhanced support. Monitoring alone is unlikely to improve outcomes but may do so when it improves prescription of or adherence to lifesaving treatments. Given enough resources, traditional methods for delivering care may render an interactive voice-response system or a home telemonitoring system ineffective. Nonetheless, there may be more cost-efficient approaches to ensuring quality care.2 Informal post hoc addition of these data to our recent meta-analysis of telephone support1 does not substantially alter the point estimates for death from any cause or heart-failure−related hospitalizations, but it does nullify the small benefit in hospitalizations for any cause, which may not be reduced by a heart-failure−focused intervention.1 Original article: Telemonitoring in Patients with Heart Failure NEJM. December 9, 2010 | S.I. Chaudhry and Others
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
Introduction The suitability of video conferencing (VC) technology for clinical purposes relevant to geriatric medicine is still being established. This project aimed to determine the validity of the diagnosis of dementia via VC. Methods This was a multisite, noninferiority, prospective cohort study. Patients, aged 50 years and older, referred by their primary care physician for cognitive assessment, were assessed at 4 memory disorder clinics. All patients were assessed independently by 2 specialist physicians. They were allocated one face-to-face (FTF) assessment (Reference standard – usual clinical practice) and an additional assessment (either usual FTF assessment or a VC assessment) on the same day. Each specialist physician had access to the patient chart and the results of a battery of standardized cognitive assessments administered FTF by the clinic nurse. Percentage agreement (P0) and the weighted kappa statistic with linear weight (Kw) were used to assess inter-rater reliability across the 2 study groups on the diagnosis of dementia (cognition normal, impaired, or demented). Results The 205 patients were allocated to group: Videoconference (n = 100) or Standard practice (n = 105); 106 were men. The average age was 76 (SD 9, 51–95) and the average Standardized Mini-Mental State Examination Score was 23.9 (SD 4.7, 9–30). Agreement for the Videoconference group (P0= 0.71; Kw = 0.52; P < .0001) and agreement for the Standard Practice group (P0= 0.70; Kw = 0.50; P < .0001) were both statistically significant (P < .05). The summary kappa statistic of 0.51 (P = .84) indicated that VC was not inferior to FTF assessment. Conclusions Previous studies have shown that preliminary standardized assessment tools can be reliably administered and scored via VC. This study focused on the geriatric assessment component of the interview (interpretation of standardized assessments, taking a history and formulating a diagnosis by medical specialist) and identified high levels of agreement for diagnosing dementia. A model of service incorporating either local or remote administered standardized assessments, and remote specialist assessment, is a reliable process for enabling the diagnosis of dementia for isolated older adults.
Resumo:
Contends that South African universities must find admissions criteria, other than high school grades, that are both fair and valid for Black applicants severely disadvantaged by an inferior school education. The use of traditional intellectual assessments and aptitude tests for disadvantaged and minority students remains controversial as a fair assessment; they do not take account of potential for change. In this study, therefore, a measure of students' cognitive modifiability, assessed by means of an interactive assessment model, was added as a moderator of traditional intellectual assessment in predicting 1st-yr university success. Cognitive modifiability significantly moderated the predictive validity of the traditional intellectual assessment for 52 disadvantaged Black students. The higher the level of cognitive modifiability, the less effective were traditional methods for predicting academic success and vice versa.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
Summary: Objective: We performed spike triggered functional MRI (fMRI) in a 12 year old girl with Benign Epilepsy with Centro-temporal Spikes (BECTS) and left-sided spikes. Our aim was to demonstrate the cerebral origin of her interictal spikes. Methods: EEG was recorded within the 3 Tesla MRI. Whole brain fMRI images were acquired, beginning 2–3 seconds after spikes. Baseline fMRI images were acquired when there were no spikes for 20 seconds. Image sets were compared with the Student's t-test. Results: Ten spike and 20 baseline brain volumes were analysed. Focal activiation was seen in the inferior left sensorimotor cortex near the face area. The anterior cingulate was more active during baseline than spikes. Conclusions: Left sided epileptiform activity in this patient with BECTS is associated with fMRI activation in the left face region of the somatosensory cortex, which would be consistent with the facial sensorimotor involvement in BECT seizures. The presence of BOLD signal change in other regions raises the possibility that the scalp recorded field of this patient with BECTs may reflect electrical change in more than one brain region.
Resumo:
In Woolworths Ltd v Graham [2007] QDC 301 Searles DCJ struck out a pre-proceedings application under the Personal Injuries Proceedings Act 2002 (Qld)on the basis that the material before the Court was not sufficient to attract the jurisdiction of the District Court.The decision serves more broadly as a reminder that the District Court is an inferior court of defined and limited jurisdiction and that any proceedings brought in it must be demonstrably within the jurisdiction conferred on that court by legislation.
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.