99 resultados para CORE-SHELL TECTO(DENDRIMERS)
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.
Resumo:
A series of solid strong acid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid strong acid counterparts were characterised by a variety of techniques including 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR), scanned electronic microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption and infrared emission spectroscopy (IES). NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained solid acids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.