585 resultados para COLI CELL LYSATE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. The genome-sequenced prototype UPEC strain CFT073 contains 11 putative AT-encoding genes. In this study, we have performed a detailed molecular characterization of two closely related AT adhesins from CFT073: UpaB (c0426) and UpaC (c0478). PCR screening revealed that the upaB and upaC AT-encoding genes are common in E. coli. The upaB and upaC genes were cloned and characterized in a recombinant E. coli K-12 strain background. This revealed that they encode proteins located at the cell surface but possess different functional properties: UpaB mediates adherence to several ECM proteins, while UpaC expression is associated with increased biofilm formation. In CFT073, upaB is expressed while upaC is transcriptionally repressed by the global regulator H-NS. In competitive colonization experiments employing the mouse UTI model, CFT073 significantly outcompeted its upaB (but not upaC) isogenic mutant strain in the bladder. This attenuated phenotype was also observed in single-challenge experiments, where deletion of the upaB gene in CFT073 significantly reduced early colonization of the bladder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here the role of muramidases present in clones of metagenomic DNA that result in cell aggregation and biofilm formation by Escherichia coli. The metagenomic clones were obtained from uncultured Lachnospiraceae-affiliated bacteria resident in the foregut microbiome of the Tammar wallaby. One of these fosmid clones (p49C2) was chosen for more detailed studies and a variety of genetic methods were used to delimit the region responsible for the phenotype to an open reading frame of 1425 bp. Comparative sequence analysis with other fosmid clones giving rise to the same phenotype revealed the presence of muramidase homologues with the same modular composition. Phylogenetic analysis of the fosmid sequence data assigned these fosmid inserts to recently identified, but uncultured, phylogroups of Lachnospiraceae believed to be numerically dominant in the foregut microbiome of the Tammar wallaby. The muramidase is a modular protein containing putative N-acetylmuramoyl--alanine amidase and an endo-β-N-acetylglucosaminidase catalytic module, with a similar organization and functional properties to some Staphylococcal autolysins that also confer adhesive properties and biofilm formation. We also show here that the cloned muramidases result in the production of extracellular DNA, which appears to be the key for biofilm formation and autoaggregation. Collectively, these findings suggest that biofilm formation and cell aggregation in gut microbiomes might occur via the concerted action of carbohydrate-active enzymes and the production of extracellular DNA to serve as a biofilm scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii. Results Phylogenetic analysis of the type 3 fimbrial genes (mrkABCD) from 39 strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae MGH78578. The E. coli and K. pneumoniae mrkABCD gene sequences clustered together in two distinct clades, supporting previous evidence for the occurrence of inter-genera lateral gene transfer. All of the strains examined caused type 3 fimbriae mediated agglutination of tannic acid treated human erythrocytes despite sequence variation in the mrkD-encoding adhesin gene. Type 3 fimbriae deletion mutants were constructed in 13 representative strains and were used to demonstrate a direct role for type 3 fimbriae in biofilm formation. Conclusions The expression of functional type 3 fimbriae is common to many Gram-negative pathogens that cause CAUTI and is strongly associated with biofilm growth. Our data provides additional evidence for the spread of type 3 fimbrial genes by lateral gene transfer. Further work is now required to substantiate the clade structure reported here by examining more strains as well as other bacterial genera that make type 3 fimbriae and cause CAUTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract without provoking symptoms. Here, we compared the virulence properties of a collection of ABU Escherichia coli strains to cystitis and pyelonephritis strains. Specific urinary tract infection (UTI)-associated virulence genes, hemagglutination characteristics, siderophore production, hemolysis, biofilm formation, and the ability of strains to adhere to and induce cytokine responses in epithelial cells were analyzed. ABU strains were phylogenetically related to strains that cause symptomatic UTI. However, the virulence properties of the ABU strains were variable and dependent on a combination of genotypic and phenotypic factors. Most ABU strains adhered poorly to epithelial cells; however, we also identified a subgroup of strongly adherent strains that were unable to stimulate an epithelial cell IL-6 cytokine response. Poor immune activation may represent one mechanism whereby ABU E. coli evade immune detection after the establishment of bacteriuria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenic bacteria have a large repertoire of surface organelles involved in adherence, motility and protein export, but how individual bacteria co-ordinate surface organelle expression to prevent interference and excessive immune stimulation is unclear. Phase variation is a mechanism by which expression of surface factors is limited to a fraction of the bacterial population; however, the presence of multiple homologous surface structures controlled by related mechanisms and regulators antagonizes the independent expression achieved by phase variation. To investigate whether other mechanisms have evolved to sort out the bacterial cell surface, we examined regulatory cross-talk between multiple phase-variable pyelonephritis-associated pili (pap) operons in Escherichia coli isolates associated with urinary tract infections. Allelic variation identified in the regulatory regions and regulators acts synergistically to limit coexpression of homologous fimbrial operons. In particular, there is evidence that papI is under positive selection and PapI variants displayed differences in their capacity to activate related pap operons. Alleles of the high-affinity binding site for PapB were shown to contain a variable number of (T/A)3 repeats occurring every 9 bp that altered the sensitivity of pap operon activation. Taken together with other examples of surface organelle cross-talk, we illustrate how this regulation could promote sequential expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bacterial virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. Methods We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14−/− mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. Results UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14−/− mice. Exacerbation of infection in Cd14−/− mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. Conclusions This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.