93 resultados para COASTAL ECOSYSTEMS
Resumo:
Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.
Resumo:
The equations governing saltwater intrusion in coastal aquifers are complex. Backward Euler time stepping approaches are often used to advance the solution to these equations in time, which typically requires that small time steps be taken in order to ensure that an accurate solution is obtained. We show that a method of lines approach incorporating variable order backward differentiation formulas can greatly improve the efficiency of the time stepping process.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, an explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Webbased Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these webbased tools for collaborative decision making.
Resumo:
The first Workshop on Service-Oriented Business Networks and Ecosystems (SOBNE ’09) is held in conjunction with the 13th IEEE International EDOC Conference on 2 September 2009 in Auckland, New Zealand. The SOBNE ’09 program includes 9 peer-reviewed papers (7 full and 2 short papers) and an open discussion session. This introduction to the Proceedings of SOBNE ’09 starts with a brief background of the motivation for the workshop. Next, it contains a short description of the peer-reviewed papers, and finally, after some concluding statements and the announcement of the winners of the Best Reviewer Award and the Most Promising Research Award, it lists the members of the SOBNE ’09 Program Committee and external reviewers of the workshop submissions.
Resumo:
At the turn of the millennium, the Earth’s human population has reached unprecedented levels and its natural resources are being pushed to the limit. Thus, cities are focused on sustainable development and they have begun to develop new strategies for improving the built environment. Sustainable development provides the best outcomes for the human and natural environments by improving the quality of life that protects and balances the ecological, social and economic values. This brings us to the main point: to build a sustainable built environment, cities need to redesign many of their technologies and planning policies within the context of ecological principles. As an environmental sustainability index model, ASSURE is developed to investigate the present environmental situation of an urban area by assessing the impacts of development pressure on natural resources. It is an innovative approach to provide the resilience and function of urban ecosystems secure against the environmental degradation for now and the future. This paper aims to underline the importance of the model (ASSURE) in preserving biodiversity and natural ecosystems in the built environment and investigate its role in delivering long-term urban planning policies.
Resumo:
In this study, the host-sensitivity and -specificity of JCV and BKV polyomaviruses were evaluated by testing wastewater/fecal samples from nine host groups in Southeast Queensland, Australia. The JCV and BKV polyomaviruses were detected in 48 human wastewater samples collected from the primary and secondary effluent suggesting high sensitivity of these viruses in human wastewater. Of the 81 animal wastewater/fecal samples tested, 80 were PCR negative for this marker. Only one sample from pig wastewater was positive. Nonetheless, the overall host-specificity of these viruses to differentiate between human and animal wastewater/fecal samples was 0.99. To our knowledge, this is the first study in Australia that reports the high specificity of JCV and BKV polyomaviruses. To evaluate the field application of these viruses to detect human fecal pollution, 20 environmental samples were collected from a coastal river. Of the 20 samples tested, 15% and 70% samples exceeded the regulatory guidelines for E. coli and enterococci levels for marine waters. In all, 5 (25%) samples were PCR positive for JCV and BKV indicated the presence of human fecal pollution in the studied river. The results suggest that JCV and BKV detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.
Resumo:
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.