128 resultados para CARDIAC OUTPATIENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study objective was to determine whether the ‘cardiac decompensation score’ could identify cardiac decompensation in a patient with existing cardiac compromise managed with intraaortic balloon counterpulsation (IABP). A one-group, posttest-only design was utilised to collect observations in 2003 from IABP recipients treated in the intensive care unit of a 450 bed Australian, government funded, public, cardiothoracic, tertiary referral hospital. Twenty-three consecutive IABP recipients were enrolled, four of whom died in ICU (17.4%). All non-survivors exhibited primarily rising scores over the observation period (p < 0.001) and had final scores of 25 or higher. In contrast, the maximum score obtained by a survivor at any time was 15. Regardless of survival, scores for the 23 participants were generally decreasing immediately following therapy escalation (p = 0.016). Further reflecting these changes in patient support, there was also a trend for scores to move from rising to falling at such treatment escalations (p = 0.024). This pilot study indicates the ‘cardiac decompensation score’ to accurately represent changes in heart function specific to an individual patient. Use of the score in conjunction with IABP may lead to earlier identification of changes occurring in a patient's cardiac function and thus facilitate improved IABP outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Nurse-led telephone follow-up offers a relatively inexpensive method of delivering education and support for assisting recovery in the early discharge period; however, its efficacy is yet to be determined. Aim: To perform a critical integrative review of the research literature addressing the effectiveness of nurse-led telephone interventions for people with coronary heart disease (CHD). Methods: A literature search of five health care databases; Sciencedirect, Cumulative Index to Nursing and Allied Health Literature, Pubmed, Proquest and Medline to identify journal articles between 1980 and 2009. People with cardiac disease were considered for inclusion in this review. The search yielded 128 papers, of which 24 met the inclusion criteria. Results: A total of 8330 participants from 24 studies were included in the final review. Seven studies demonstrated statistically significant differences in all outcomes measured, used two group experimental research design and valid and reliable instruments. Some positive effects were detected in eight studies in regards to nurse-led telephone interventions for people with cardiac disease and no differences were detected in nine studies. Discussion: Studies with some positive effects generally had stronger research designs, large samples, used valid and reliable instruments and extensive nurse-led educative interventions. Conclusion: The results suggest that people with cardiac disease showed some benefits from nurse-led/delivered telephone interventions. More rigorous research into this area is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: People with cardiac disease and type 2 diabetes have higher hospital readmission rates (22%)compared to those without diabetes (6%). Self-management is an effective approach to achieve better health outcomes; however there is a lack of specifically designed programs for patients with these dual conditions. This project aims to extend the development and pilot test of a Cardiac-Diabetes Self-Management Program incorporating user-friendly technologies and the preparation of lay personnel to provide follow-up support. Methods/Design: A randomised controlled trial will be used to explore the feasibility and acceptability of the Cardiac-Diabetes Self-Management Program incorporating DVD case studies and trained peers to provide follow-up support by telephone and text-messaging. A total of 30 cardiac patients with type 2 diabetes will be randomised, either to the usual care group, or to the intervention group. Participants in the intervention group will received the Cardiac-Diabetes Self-Management Program in addition to their usual care. The intervention consists of three faceto- face sessions as well as telephone and text-messaging follow up. The face-to-face sessions will be provided by a trained Research Nurse, commencing in the Coronary Care Unit, and continuing after discharge by trained peers. Peers will follow up patients for up to one month after discharge using text messages and telephone support. Data collection will be conducted at baseline (Time 1) and at one month (Time 2). The primary outcomes include self-efficacy, self-care behaviour and knowledge, measured by well established reliable tools. Discussion: This paper presents the study protocol of a randomised controlled trial to pilot evaluates a Cardiac- Diabetes Self-Management program, and the feasibility of incorporating peers in the follow-ups. Results of this study will provide directions for using such mode in delivering a self-management program for patients with both cardiac condition and diabetes. Furthermore, it will provide valuable information of refinement of the intervention program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies exploring the incidence and readmission rates of cardiac patients admitted to a coronary care unit (CCU) with type 2 diabetes [1] have been undertaken by the first author. Interviews of these patients regarding their experiences in managing their everyday conditions [2] provided the basis for developing the initial cardiac–diabetes self-management programme (CDSMP) [3]. Findings from each of these previous studies highlighted the complexity of self-management for patients with both conditions and contributed to the creation of a new self-management programme, the CDSMP, based on Bandura’s (2004) self-efficacy theory [4]. From patient and staff feedback received for the CDSMP [3], it became evident that further revision of the programme was needed to improve self-management levels of patients and possibility of incorporating methods of information technology (IT). Little is known about the applicability of different methods of technology for delivering self-management programmes for patients with chronic diseases such as those with type 2 diabetes and cardiac conditions. Although there is some evidence supporting the benefits and the great potential of using IT in supporting self-management programmes, it is not strong, and further research on the use of IT in such programmes is recommended [5–7]. Therefore, this study was designed to pilot test feasibility of the CDSMP incorporating telephone and text-messaging as follow-up approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.

Relevância:

20.00% 20.00%

Publicador: