29 resultados para Brendan, Saint, the Voyager, ca. 483-577.
Resumo:
Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.
Resumo:
The mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 , a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm-1, assigned to the symmetric stretching mode of the AsO43- anion. Raman bands at 809 and 819 cm-1 are assigned to the antisymmetric stretching mode of AsO43- . The sulphate anion is characterised by bands at 1000 cm-1 (ν1), and at 1031, 1082 and 1139 cm-1 (ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm-1 with bands observed at 2850, 2868, 2918 cm-1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm-1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.
Resumo:
The two minerals borickyite and delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O have the same formula. Are the minerals identical or different? The minerals borickyite and delvauxite have been characterised by Raman spectroscopy. The minerals are related to the minerals diadochite and destinezite. Both minerals are amorphous. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The minerals are often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables an assessment of the molecular structure of borickyite and delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths. The two minerals show differing spectra and must be considered as different minerals.
Resumo:
The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Bioclastic flow deposits offshore from the Soufrie`re Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse-grained and either ungraded or poorly graded, and were deposited by non cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub-units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub-units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi-stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea-level change.
Resumo:
Objectives: To evaluate the clinical value of pre-operative serum CA125 in predicting the presence of extra-uterine disease in patients with apparent early stage endometrial cancer. Methods: Between October 6, 2005 and June 17, 2010, 760 patients were enrolled in an international, multicentre, prospective randomized trial (LACE) comparing laparotomy with laparoscopy in the management of endometrial cancer apparently confined to the uterus. This study is based on data from 657 patients with endometrial adenocarcinoma who had a pre-operative serum CA125 value, and was undertaken to correlate pre-operative serum CA125 with final stage. Results: Using a pre-operative CA-125 cutpoint of 30U/ml was associated with the smallest misclassification error (14.5%) using a multiple cross-validation method. Median pre-operative serum CA-125 was 14U/ml, and using a cutpoint of 30U/ml, 14.9% of patients had elevated CA-125 levels. Of 98 patients with elevated CA-125 level, 36 (36.7%) had evidence of extra-uterine disease. Of the 116 patients (17.7%) with evidence of extra-uterine disease, 31.0% had elevated CA-125 level. In univariate and multivariate logistic regression analysis, only pre-operative CA-125 level was found to be associated with extra-uterine spread of disease. Utilising a cutpoint of 30U/ml achieved a sensitivity, specificity, positive predictive value and negative predictive value of 31.0%, 88.5%, 36.7% and 85.7% respectively. Overall, 326/657 (49.6%) of patients had full surgical staging involving lymph node dissection. When analysis was limited to patients that had undergone full surgical staging, the outcomes remained essentially unchanged. Conclusions: Elevated CA-125 above 30U/ml in patients with apparent early stage disease is associated with a sensitivity of 31.0% and specificity of 88.5% in detecting extra-uterine disease. Pre-operative identification of this risk factor may assist to triage patients to tertiary centres and comprehensive surgical staging.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
Phosphohedyphane Ca2Pb3(PO4)3Cl is rare Ca and Pb phosphate mineral that belongs to the apatite supergroup. We have analysed phosphohedyphane using SEM with EDX, and Raman and infrared spectroscopy. The chemical analysis shows the presence of Pb, Ca, P and Cl and the chemical formula is expressed as Ca2Pb3(PO4)3Cl. The very sharp Raman band at 975 cm−1 is assigned to the PO43-ν1 symmetric stretching mode. Raman bands noted at 1073, 1188 and 1226 cm−1 are to the attributed to the PO43-ν3 antisymmetric stretching modes. The two Raman bands at 835 and 812 cm−1 assigned to the AsO43-ν1 symmetric stretching vibration and AsO43-ν3 antisymmetric stretching modes prove the substitution of As for P in the structure of phosphohedyphane. A series of bands at 557, 577 and 595 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 units. The multiplicity of bands in the ν2, ν3 and ν4 spectral regions provides evidence for the loss of symmetry of the phosphate anion in the phosphohedyphane structure. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra. Some Raman bands attributable to OH stretching bands were observed, indicating the presence of water and/or OH units in the structure.
Resumo:
Depolymerization of purified organosolv eucalyptus wood lignin by the heterogeneous catalysts, cobalt polyphosphate (CoP2O6) and calcium phosphate (β-CaP2O6) was investigated. A total syringol yield of 16.7% was achieved with β-CaP2O6 in a methanol/water (50/50, wt/wt) solvent system after depolymerization at 300 ºC for 1 h, showing selectivity of the catalyst.