145 resultados para Blackmore, R. D. (Richard Doddridge), 1825-1900.
Resumo:
What is the contribution of innovation brokers in leveraging research and development (R&D) investment to enhance industry-wide capabilities? The case of the Australian Cooperative Research Centre for Construction Innovation (CRC CI) is considered in the context of motivating supply chain firms to improve their organizational capabilities in order to acquire, assimilate, transfer and exploit R&D outcomes to their advantage, and to create broader industry and national benefits. A previous audit and analysis has shown an increase in business R&D investment since 2001. The role of the CRC CI in contributing to growth in the absorptive capacity of the Australian construction industry as a whole is illustrated through two programmes: digital modelling building information modelling (BIM) and construction site safety. Numerous positive outcomes in productivity, quality, improved safety and competitiveness were achieved between 2001 and 2009.
Resumo:
The overarching goal of this project is to better match funding strategies to industry needs to maximise the benefits of R&D to Australia’s infrastructure and building industry. Project partners are: Queensland Department of Public Works; Queensland Transport and Main Roads; Western Australian Department of Treasury and Finance; John Holland; Queensland University of Technology; Swinburne University of Technology; and VTT Technical Research Centre of Finland (Prof Göran Roos). This project has been endorsed by the Australian Built Environment Industry Innovation Council (BEIIC) with Council member Prof Catherin Bull serving on this project’s Steering Committee. This project seeks to: (i) maximise the value of R&D investment in this sector through improved understanding of future industry research needs; and (ii) address the perceived problem of a disproportionately low R&D investment in this sector, relative to the size and national importance of the sector. This research will develop new theory built on open innovation, dynamic capabilities and absorptive capacity theories in the context of strategic foresighting and roadmapping activities. Four project phases have been designed to address this research: 1: Audit and analysis of R&D investment in the Australian built environment since 1990 - access publically available data relating to R&D investments across Australia from public and private organisations to understand past trends. 2: Examine diffusion mechanisms of research and innovation and its impact on public and private organisations – investigate specific R&D investments to determine the process of realising research support, direction-setting, project engagement, impacts and pathways to adoption. 3: Develop a strategic roadmap for the future of this critical Australian industry - assess the likely future landscapes that R&D investment will both respond to and anticipate. 4: Develop policy to maximise the value of R&D investments to public and private organisations – through translating project learnings into policy guidelines.
Resumo:
Professor Peter Barrett at the 2013 CIB World Building Congress1 (WBC13) presented a timely context for the future of research and development (R&D) investment in the global construction industry (Barrett, 2013). He called for a shift in the focus from lessons learned and doing things better to what is the right thing to do and developing a new paradigm for achieving this. This shift requires empathy with industry and users; a desire to generate and transmit knowledge; an opportunity to study deeply and over the long term; and with an objective stance towards fJositive and negative findings. This shift includes the creation of sta11dards for the holistic impact of spaces through exemplary pilot projects creating evidence for policy makers and clients (Barrett, 2013)...
Resumo:
Few would disagree that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector׳s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these questions. Carried out in collaboration with the Society of Petroleum Engineers (SPE), the survey was sent to 469 executives and senior managers who played a significant role with regard to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations were considered to be valuable sources of new information and knowledge in the industry׳s R&D initiatives, and; (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry׳s overall R&D and technology deployment activities. By providing a detailed and objective snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry. The methodology did result in a coverage bias within the survey, however, and the limitations arising from this are explored.
Resumo:
In this study, we investigate the qualitative and quantitative effects of an R&D subsidy for a clean technology and a Pigouvian tax on a dirty technology on environmental R&D when it is uncertain how long the research takes to complete. The model is formulated as an optimal stopping problem, in which the number of successes required to complete the R&D project is finite and learning about the probability of success is incorporated. We show that the optimal R&D subsidy with the consideration of learning is higher than that without it. We also find that an R&D subsidy performs better than a Pigouvian tax unless suppliers have sufficient incentives to continue cost-reduction efforts after the new technology success-fully replaces the old one. Moreover, by using a two-project model, we show that a uniform subsidy is better than a selective subsidy.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.
Resumo:
Although there has been exponential growth in the number of studies of destination image appearing in the tourism literature, few have addressed the role of affective perceptions. This paper analyses the market positions held by a competitive set of destinations, through a comparison of cognitive, affective and conative perceptions. Cognitive perceptions were measured by trialling a factor analytic adaptation of importance-performance analysis. Affective perceptions were measured using an affective response grid. The alignment of the results from these techniques identified leadership positions held by two quite different destinations on two quite different dimensions of short break destination attractiveness.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.