84 resultados para Biometric components
Resumo:
Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.
Resumo:
Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.
Resumo:
Continuous biometric authentication schemes (CBAS) are built around the biometrics supplied by user behavioural characteristics and continuously check the identity of the user throughout the session. The current literature for CBAS primarily focuses on the accuracy of the system in order to reduce false alarms. However, these attempts do not consider various issues that might affect practicality in real world applications and continuous authentication scenarios. One of the main issues is that the presented CBAS are based on several samples of training data either of both intruder and valid users or only the valid users' profile. This means that historical profiles for either the legitimate users or possible attackers should be available or collected before prediction time. However, in some cases it is impractical to gain the biometric data of the user in advance (before detection time). Another issue is the variability of the behaviour of the user between the registered profile obtained during enrollment, and the profile from the testing phase. The aim of this paper is to identify the limitations in current CBAS in order to make them more practical for real world applications. Also, the paper discusses a new application for CBAS not requiring any training data either from intruders or from valid users.
Resumo:
Aims--Telemonitoring (TM) and structured telephone support (STS) have the potential to deliver specialised management to more patients with chronic heart failure (CHF), but their efficacy is still to be proven. Objectives To review randomised controlled trials (RCTs) of TM or STS on all- cause mortality and all-cause and CHF-related hospitalisations in patients with CHF, as a non-invasive remote model of specialised disease-management intervention.--Methods and Results--Data sources:We searched 15 electronic databases and hand-searched bibliographies of relevant studies, systematic reviews, and meeting abstracts. Two reviewers independently extracted all data. Study eligibility and participants: We included any randomised controlled trials (RCT) comparing TM or STS to usual care of patients with CHF. Studies that included intensified management with additional home or clinic visits were excluded. Synthesis: Primary outcomes (mortality and hospitalisations) were analysed; secondary outcomes (cost, length of stay, quality of life) were tabulated.--Results: Thirty RCTs of STS and TM were identified (25 peer-reviewed publications (n=8,323) and five abstracts (n=1,482)). Of the 25 peer-reviewed studies, 11 evaluated TM (2,710 participants), 16 evaluated STS (5,613 participants) and two tested both interventions. TM reduced all-cause mortality (risk ratio (RR 0•66 [95% CI 0•54-0•81], p<0•0001) and STS showed similar trends (RR 0•88 [95% CI 0•76-1•01], p=0•08). Both TM (RR 0•79 [95% CI 0•67-0•94], p=0•008) and STS (RR 0•77 [95% CI 0•68-0•87], p<0•0001) reduced CHF-related hospitalisations. Both interventions improved quality of life, reduced costs, and were acceptable to patients. Improvements in prescribing, patient-knowledge and self-care, and functional class were observed.--Conclusion: TM and STS both appear effective interventions to improve outcomes in patients with CHF.
Resumo:
It is possible for the visual attention characteristics of a person to be exploited as a biometric for authentication or identification of individual viewers. The visual attention characteristics of a person can be easily monitored by tracking the gaze of a viewer during the presentation of a known or unknown visual scene. The positions and sequences of gaze locations during viewing may be determined by overt (conscious) or covert (sub-conscious) viewing behaviour. This paper presents a method to authenticate individuals using their covert viewing behaviour, thus yielding a unique behavioural biometric. A method to quantify the spatial and temporal patterns established by the viewer for their covert behaviour is proposed utilsing a principal component analysis technique called `eigenGaze'. Experimental results suggest that it is possible to capture the unique visual attention characteristics of a person to provide a simple behavioural biometric.
Resumo:
PURPOSE: To investigate the interocular symmetry of ocular optical, biometric and biomechanical characteristics between the more and less ametropic eyes of myopic anisometropes. METHODS: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in the more and less ametropic eye of each subject including; axial length, ocular aberrations, intraocular pressure and corneal topography, thickness and biomechanics. Morphology of the anterior eye in primary and downward gaze was examined using custom software analysis of high resolution digital images. Ocular sighting dominance was assessed using the hole-in-the-card test. RESULTS: Mean absolute spherical equivalent anisometropia was 1.74 ± 0.74 D. There was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less ametropic fellow eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D (n = 10), the more myopic eye was the dominant sighting eye in nine of these ten subjects. Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. CONCLUSIONS: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.
Resumo:
Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.
Resumo:
This article addresses the causal powers associated with the social phenomena of alternative schooling for youth at risk. It stems from a doctoral thesis, Alternative Schooling Programs for At Risk Youth – Three Case Studies which addresses wider issues integral to alternative schooling: youth at risk, alternative schooling models, and literacy. This article explores one aspect of alternative schooling: the historical causal factors involved in the establishment and continuance of three alternative case study models in Queensland, Australia. By adhering to Bhaskar’s transformational model of social activity (TMSA) , social structures and individuals will be analytically distinguished to uncover their separate causal powers and how these have effected the establishment and continuance of three alternative schools.
Resumo:
Transcending traditional national borders, the Internet is an evolving technology that has opened up many new international market opportunities. However, ambiguity remains, with limited research and understanding of how the Internet influences the firm’s internationalisation process components. As a consequence, there has been a call for further investigation of the phenomenon. Thus, the purpose of this study was to investigate the Internet’s impact on the internationalisation process components, specifically, information availability, information usage, interactive communication and international market growth. Analysis was undertaken using structural equation modelling. Findings highlight the mediating impact of the Internet on information and knowledge transference in the internationalisation process. Contributions of the study test conceptualisations and give statistical validation of interrelationships, while illuminating the Internet’s impact on firm internationalisation.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper comprises: a study investigating the component mechanical behaviour of a spring-suspended, production level seat when indented by SAE J826 type, human thigh-buttock representing hard shell; a model of seated human buttock shape for improved indenter design using a multivariate representation of Australian population thigh-buttock anthropometry; and a finite-element study simulating the deflection of human buttock and thigh soft tissue when seated, based on seated MRI. The results of the three studies provide a description of the mechanical properties of the driver-seat interface, and allow validation of future dynamic simulations, involving multi-body and finite-element (FE) DHM in virtual ergonomic studies.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.