33 resultados para Biomass determination (Smith et al., 1983)
Resumo:
This article corrects: Brief Report: High-Throughput Sequencing of IL23R Reveals a Low-Frequency, Nonsynonymous Single-Nucleotide Polymorphism That Is Associated With Ankylosing Spondylitis in a Han Chinese Population Vol. 65, Issue 7, 1747–1752, Article first published online: 2 JUL 2013
Resumo:
We thank Ploski and colleagues for their interest in our study. The explanation for the difference in our findings is a typographic error in Table 2 of our article, whereby the alleles for marker TNF ⫺1031 were labeled incorrectly...
Resumo:
Estimating the economic burden of injuries is important for setting priorities, allocating scarce health resources and planning cost-effective prevention activities. As a metric of burden, costs account for multiple injury consequences—death, severity, disability, body region, nature of injury—in a single unit of measurement. In a 1989 landmark report to the US Congress, Rice et al1 estimated the lifetime costs of injuries in the USA in 1985. By 2000, the epidemiology and burden of injuries had changed enough that the US Congress mandated an update, resulting in a book on the incidence and economic burden of injury in the USA.2 To make these findings more accessible to the larger realm of scientists and practitioners and to provide a template for conducting the same economic burden analyses in other countries and settings, a summary3 was published in Injury Prevention. Corso et al reported that, between 1985 and 2000, injury rates declined roughly 15%. The estimated lifetime cost of these injuries declined 20%, totalling US$406 billion, including US$80 billion in medical costs and US$326 billion in lost productivity. While incidence reflects problem size, the relative burden of injury is better expressed using costs.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.
Resumo:
Eepidemiological studies have linked exposure to ultrafine particles (UFPs, <100 nm) to a variety of adverse health effects. To understand the mechanisms behind these effects, it is essential to measure aerosol deposition in the human respiratory tract. Electrical charge is a very important property as it may increase the particle deposition in human respiratory tract (Melanderi et al., 1983). However, the effect of charge on UFP deposition has seldom been investigated. The aim of this study is to investigate the effect of charge on UFP deposition in human lung, by conducting a pilot study using a tube-based experimental system.
Resumo:
The health effects of ultrafine particles (UFPs, <100 nm) have received increasing attention in recent years and particles from a variety of indoor sources, such as combustion or printer emissions, fall within this size range. Since people spend most of their time indoors, knowledge on aerosol deposition in the human respiratory tract is essential to minimise the health risks associated with environmental or occupational exposure to aerosol particles. Among the factors that could alter particle deposition, electrical charge is important as it may increase particle deposition in human respiratory tract (Melanderi et al., 1983), even when particles carry only a few charges. However, evidence showing such an increase in particle deposition for UFPs is sparse. The aim of this study was to investigate the effect of charge on the deposition of UFPs in the human lung by studying the deposition of charged particles in the conductive tubing of an experimental laboratory system.
Resumo:
Background Certain genes from the glutathione S-transferase superfamily have been associated with several cancer types. It was the objective of this study to determine whether alleles of the glutathione S-transferase zeta 1 (GSTZ1) gene are associated with the development of sporadic breast cancer. Methods DNA samples obtained from a Caucasian population affected by breast cancer and a control population, matched for age and ethnicity, were genotyped for a polymorphism of the GSTZ1 gene. After PCR, alleles were identified by restriction enzyme digestion and results analysed by chi-square and CLUMP analysis. Results Chi-squared analysis gave a χ2 value of 4.77 (three degrees of freedom) with P = 0.19, and CLUMP analysis gave a T1 value of 9.02 with P = 0.45 for genotype frequencies and a T1 value of 4.77 with P = 0.19 for allele frequencies. Conclusion Statistical analysis indicates that there is no association of the GSTZ1 variant and hence the gene does not appear to play a significant role in the development of sporadic breast cancer.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Sector wide interest in Reframe: QUT’s Evaluation Framework continues with a number of institutions requesting finer details as QUT embeds the new approach to evaluation across the university in 2013. This interest, both nationally and internationally has warranted QUT’s collegial response to draw upon its experiences from developing Reframe into distilling and offering Kaleidoscope back to the sector. The word Reframe is a relevant reference for QUT’s specific re-evaluation, reframing and adoption of a new approach to evaluation; whereas Kaleidoscope reflects the unique lens through which any other institution will need to view their own cultural specificity and local context through an extensive user-led stakeholder engagement approach when introducing new approaches to learning and teaching evaluation. Kaleidoscope’s objectives are for QUT to develop its research-based stakeholder approach to distil the successful experience exhibited in the Reframe Project into a transferable set of guidelines for use by other tertiary institutions across the sector. These guidelines will assist others to design, develop, and deploy, their own culturally specific widespread organisational change informed by stakeholder engagement and organisational buy-in. It is intended that these guidelines will promote, support and enable other tertiary institutions to embark on their own evaluation projects and maximise impact. Kaleidoscope offers an institutional case study of widespread organisational change underpinned by Reframe’s (i) evidence-based methodology; (ii) research including published environmental scan, literature review (Alderman, et al., 2012), development of a conceptual model (Alderman, et al., in press 2013), project management principles (Alderman & Melanie, 2012) and national conference peer reviews; and (iii) year-long strategic project with national outreach to collaboratively engage the development of a draft set of National Guidelines. Kaleidoscope’s aims are to inform Higher Education evaluation policy development through national stakeholder engagement, the finalisation of proposed National Guidelines. In correlation with the conference paper, the authors will present a Draft Guidelines and Framework ready for external peer review by evaluation practitioners from the Higher Education sector, as part of Kaleidoscope’s dissemination strategy (Hinton & Gannaway, 2011) applying illuminative evaluation theory (Parlett & Hamilton, 1976), through conference workshops and ongoing discussions (Shapiro, et al., 1983; Jacobs, 2000). The initial National Guidelines will be distilled from the Reframe: QUT’s Evaluation Framework’s Policy, Protocols, and incorporated Business Rules. It is intended that the outcomes of Kaleidoscope are owned by and reflect sectoral engagement, including iterative evaluation through multiple avenues of dissemination and collaboration including the Higher Education sector. The dissemination strategy with the inclusion of Illuminative Evaluation methodology provides an inclusive opportunity for other institutions and stakeholders across the Higher Education sector to give voice through the information-gathering component of evaluating the draft Guidelines, providing a comprehensive understanding of the complex realities experienced across the Higher Education sector, and thereby ‘illuminating’ both the shared and unique lenses and contexts. This process will enable any final guidelines developed to have broader applicability, greater acceptance, enhanced sustainability and additional relevance benefiting the Higher Education sector, and the adoption and adaption by any single institution for their local contexts.
Resumo:
The main focus of ‘Kaleidoscope: Reframing evaluation through a stakeholder approach to sustainable, cultural change in Higher Education’ is to develop a set of principles to guide user-led engagement in widespread organisational change and maximise its impact. The word kaleidoscope represents the unique lens through which each institution will need to view their cultural specificity and local context through an extensive process of collaboration and engagement, followed by communication and dissemination. Kaleidoscope has particular relevance when new approaches to learning and teaching evaluation are introduced by tertiary institutions. Building on the Reframe Project, which involved three years of user-led consultation and was designed to meet stakeholders’ needs, QUT successfully introduced a new evaluation framework in 2013 across the university. Reframe was evidence based, involved scholarly reflection and was founded on a strong theoretical framework. The evolution of the evaluation framework included analysis of scholarly literature and environmental scans across the higher education sector (Alderman, et al., 2012), researched development of conceptual theory (Alderman, et al., in press 2013), incorporated the stakeholder voice and framed within project management principles (Alderman & Melanie, 2012). Kaleidoscope’s objectives are for QUT to develop its research-based stakeholder approach to distil the successful experience exhibited in the Reframe Project into a transferable set of guidelines for use by other tertiary institutions across the sectors. These guidelines will assist others to design, develop, and deploy, their own culturally specific widespread organisational change informed by stakeholder engagement and organisational buy-in. It is intended that these guidelines will promote, support and enable other tertiary institutions to embark on their own projects and maximise the impact. In correlation with a our conference paper, this round table presents the Draft Guidelines and Framework ready for external peer review by evaluation practitioners, as part of Kaleidoscope’s dissemination (Hinton & Gannaway, 2011) applying illuminative evaluation theory (Parlett & Hamilton, 1976), through conference workshops and linked round table discussions (Shapiro, et al., 1983; Jacobs, 2000).
Resumo:
A significant percentage of human breast cancer (HBC) is dependent upon the ovarian hormone estrogen for its onset and progression. The presence or lack of estrogen receptors (ERs) in human breast cancer is an important determinant both of prognosis and of choice of treatment - a poorer prognosis being associated with ER–ve disease. Cell lines established from human breast cancer provide models for breast cancer in various stages of progression (Engel & Young 1978). When grown as tumors in athymic nude mice, these lines represent the major in vivo experimental model for HBC studies (Brünner et al 1987). The ease of both in vitro and in vivo maintenance, the human derivation of the tissue, and the similarities in plasma estrogen levels between ovariectomized nude mice and postmenopausal women (Seibert et al. 1983, Brünner et al. 1986), make the growth of human breast cancer cell lines in nude mice an attractive...