25 resultados para Biodiesel, produção, Europa


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a comprehensive study on the influences of biodiesel chemical composition and physical properties on diesel engine exhaust particle emissions. It examines biodiesels from several feedstocks having wide variations in their chemical composition (carbon chain length, unsaturation and oxygen content) and physical properties (density, viscosity, surface tension, boiling point etc.), and evaluates their influence on exhaust particle emissions. The outcome of this thesis is significant since it reveals the importance of regulating biodiesels chemical composition in order to ensure lowest possible emissions with better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis improves our insight towards the effects of using biodiesels on the particulate matter emission of diesel engines and contributes to our understanding of their potential adverse health effects. The novelty of this project is the use of biodiesel fuel with controlled chemical composition that enables us to relate changes of physiochemical properties of particles to specific properties of the biodiesel. For the first time, the possibility of a correlation of the volatility and the Reactive Oxygen Species concentration of the particles is investigated versus the saturation, oxygen content and carbon chain length of the fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, second-generation (non-vegetable oil) feedstocks for biodiesel production are receiving significant attention due to the cost and social effects connected with utilising food products for the production of energy products. The Beauty leaf tree (Calophyllum inophyllum) is a potential source of non-edible oil for producing second-generation biodiesel because of its suitability for production in an extensive variety of atmospheric condition, easy cultivation, high fruit production rate, and the high oil content in the seed. In this study, oil was extracted from Beauty leaf tree seeds through three different oil extraction methods. The important physical and chemical properties of these extracted Beauty leaf oils were experimentally analysed and compared with other commercially available vegetable oils. Biodiesel was produced using a two-stage esterification process combining of an acid catalysed pre-esterification process and an alkali catalysed transesterification process. Fatty acid methyl ester (FAME) profiles and important physicochemical properties were experimentally measured and estimated using equations based on the FAME analysis. The quality of Beauty leaf biodiesels was assessed and compared with commercially available biodiesels through multivariate data analysis using PROMETHEE-GAIA software. The results show that mechanical extraction using a screw press produces oil at a low cost, however, results in low oil yields compared with chemical oil extraction. High pressure and temperature in the extraction process increase oil extraction performance. On the contrary, this process increases the free fatty acid content in the oil. A clear difference was found in the physical properties of Beauty leaf oils, which eventually affected the oil to biodiesel conversion process. However, Beauty leaf oils methyl esters (biodiesel) were very consistent physicochemical properties and able to meet almost all indicators of biodiesel standards. Overall this study found that Beauty leaf is a suitable feedstock for producing second-generation biodiesel in commercial scale. Therefore, the findings of this study are expected to serve as the basis for further development of Beauty leaf as a feedstock for industrial scale second-generation biodiesel production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.