79 resultados para Bhaskar


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a methodology that integrates cumulative plots with probe vehicle data for estimation of travel time statistics (average, quartile) on urban networks. The integration reduces relative deviation among the cumulative plots so that the classical analytical procedure of defining the area between the plots as the total travel time can be applied. For quartile estimation, a slicing technique is proposed. The methodology is validated with real data from Lucerne, Switzerland and it is concluded that the travel time estimates from the proposed methodology are statistically equivalent to the observed values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bus travel time estimation and prediction are two important modelling approaches which could facilitate transit users in using and transit providers in managing the public transport network. Bus travel time estimation could assist transit operators in understanding and improving the reliability of their systems and attracting more public transport users. On the other hand, bus travel time prediction is an important component of a traveller information system which could reduce the anxiety and stress for the travellers. This paper provides an insight into the characteristic of bus in traffic and the factors that influence bus travel time. A critical overview of the state-of-the-art in bus travel time estimation and prediction is provided and the needs for research in this important area are highlighted. The possibility of using Vehicle Identification Data (VID) for studying the relationship between bus and cars travel time is also explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of the Macroscopic Fundamental Diagram (MFD), which relates network space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. The key requirements for the well-defined MFD is the homogeneity of the area wide traffic condition, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take drivers’ behaviour under real time information provision into account, which has a significant impact on the shape of the MFD. This research aims to demonstrate the impact of drivers’ route choice behaviour on network performance by employing the MFD as a measurement. A microscopic simulation is chosen as an experimental platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers as well as by taking different route choice parameters, various scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance and the MFD shape. This study confirmed and addressed the impact of information provision on the MFD shape and highlighted the significance of the route choice parameter setting as an influencing factor in the MFD analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is the second deliverable of the Real Time and Predictive Traveller Information project and the first deliverable of the Freeway Travel Time Information sub-project in the Integrated Traveller Information research Domain of the Smart Transport Research Centre. The primary objective of the Freeway Travel Time Information sub-project is to develop algorithms for real-time travel time estimation and prediction models for Freeway traffic. The objective of this report is to review the literature pertaining to travel time estimation and prediction models for freeway traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is the fourth deliverable of the Real Time and Predictive Traveller Information project and the first deliverable of the Arterial Travel Time Information sub-project in the Integrated Traveller Information research Domain of the Smart Transport Research Centre. The primary objective of the Arterial Travel Time Information sub-project is to develop algorithms for real-time travel time estimation and prediction models for arterial traffic. The objective of this report is to review the literature pertaining to travel time estimation and prediction models for arterial traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is the eight deliverable of the Real Time and Predictive Traveller Information project and the third deliverable of the Arterial Travel Time Information sub-project in the Integrated Traveller Information research Domain of the Smart Transport Research Centre. The primary objective of the Arterial Travel Time Information sub-project is to develop algorithms for real-time travel time estimation and prediction models for arterial traffic. Brisbane arterial network is highly equipped with Bluetooth MAC Scanners, which can provide travel time information. Literature is limited with the knowledge on the Bluetooth protocol based data acquisition process and accuracy and reliability of the analysis performed using the data. This report expands the body of knowledge surrounding the use of data from Bluetooth MAC Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bus Rapid Transit (BRT) station is the interface between passenger and service. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses maneuvering into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. However, some systems include operation where express buses pass the critical station, resulting in a proportion of non stopping buses. It is important to understand the operation of the critical busway station under this type of operation, as it affects busway line capacity. This study uses micro simulation to treat the BRT station operation and to analyze the relationship between station Limit state bus capacity (B_ls), Total Bus Capacity (B_ttl). First, the simulation model is developed for Limit state scenario and then a mathematical model is defined, calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Thereafter, the proposed B_ls model is extended to consider non stopping buses and B_ttlmodel is defined. The proposed models provides better understanding to the BRT line capacity and is useful for transit authorities for designing better BRT operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invited presentation was delivered at Queensland Department of Main Roads, Brisbane Australia, 17th June 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This poster summarises the current findings from STRC’s Integrated Traveller Information research domain that aims for accurate and reliable travel time prediction, and optimisation of multimodal trips. Following are the three selected discussions: a) Fundamental understanding on the use of Bluetooth MAC Scanner (BMS) for travel time estimation b) Integration of multi-sources (Loops and Bluetooth) for travel time and density estimation c) Architecture for online and predictive multimodal trip planner