66 resultados para Bat movements
Resumo:
Global warming is already threatening many animal and plant communities worldwide, however, the effect of climate change on bat populations is poorly known. Understanding the factors influencing the survival of bats is crucial to their conservation, and this cannot be achieved solely by modern ecological studies. Palaeoecological investigations provide a perspective over a much longer temporal scale, allowing the understanding of the dynamic patterns that shaped the distribution of modern taxa. In this study twelve microchiropteran fossil assemblages from Mount Etna, central-eastern Queensland, ranging in age from more than 500,000 years to the present day, were investigated. The aim was to assess the responses of insectivorous bats to Quaternary environmental changes, including climatic fluctuations and recent anthropogenic impacts. In particular, this investigation focussed on the effects of increasing late Pleistocene aridity, the subsequent retraction of rainforest habitat, and the impact of cave mining following European settlement at Mount Etna. A thorough examination of the dental morphology of all available extant Australian bat taxa was conducted in order to identify the fossil taxa prior to their analysis in term of species richness and composition. This detailed odontological work provided new diagnostic dental characters for eighteen species and one genus. It also provided additional useful dental characters for three species and seven genera. This odontological analysis allowed the identification of fifteen fossil bat taxa from the Mount Etna deposits, all being representatives of extant bats, and included ten taxa identified to the species level (i.e., Macroderma gigas, Hipposideros semoni, Rhinolophus megaphyllus, Miniopterus schreibersii, Miniopterus australis, Scoteanax rueppellii, Chalinolobus gouldii, Chalinolobus dwyeri, Chalinolobus nigrogriseus and Vespadelus troughtoni) and five taxa identified to the generic level (i.e., Mormopterus, Taphozous, Nyctophilus, Scotorepens and Vespadelus). Palaeoecological analysis of the fossil taxa revealed that, unlike the non-volant mammal taxa, bats have remained essentially stable in terms of species diversity and community membership between the mid-Pleistocene rainforest habitat and the mesic habitat that occurs today in the region. The single major exception is Hipposideros semoni, which went locally extinct at Mount Etna. Additionally, while intensive mining operations resulted in the abandonment of at least one cave that served as a maternity roost in the recent past, the diversity of the Mount Etna bat fauna has not declined since European colonisation. The overall resilience through time of the bat species discussed herein is perhaps due to their unique ecological, behavioural, and physiological characteristics as well as their ability to fly, which have allowed them to successfully adapt to their changing environment. This study highlights the importance of palaeoecological analyses as a tool to gain an understanding of how bats have responded to environmental change in the past and provides valuable information for the conservation of threatened modern species, such as H. semoni.
Resumo:
The making of the modern world has long been fuelled by utopian images that are blind to ecological reality. Botanical gardens are but one example – who typically portray themselves as miniature, isolated 'edens on earth'. Whilst respected, heritage-laden institutions such as the Royal Botanical Gardens in Sydney, Australia promote such an idealised image they are now self-evidently also the vital ‘lungs’ of a crowded city as well as a critical habitats for threatened biodiversity (in this case notably flying foxes). In 2010 the 'Remnant Emergency Artlab' set out to alleviate this utopian hangover through a creative provocation called the 'Botanical Gardens ‘X-Tension’ - an imagined city-wide, distributed, network of 'ecological gardens' - in order to ask, what now needs to be better understood, connected and therefore ultimately conserved?
Resumo:
Long undersea debris runout can be facilitated by a boundary layer formed by weak marine sediments under a moving slide mass. Undrained loading of such offshore sediment results in a profound drop of basal shear resistance, compared to subaerial shear resistance, enabling long undersea runout. Thus large long-runout submarine landslides are not truly enigmatic (Voight and Elsworth 1992, 1997), but are understandable in terms of conventional geotechnical principles. A corollary is that remoulded undrained strength, and not friction angle, should be used for basal resistance in numerical simulations. This hypothesis is testable via drilling and examining the structure at the soles of undersea debris avalanches for indications of incorporation of sheared marine sediments, by tests of soil properties, and by simulations. Such considerations of emplacement process are an aim of ongoing research in the Lesser Antilles (Caribbean Sea), where multiple offshore debris avalanche and dome-collapse debris deposits have been identified since 1999 on swath bathymetric surveys collected in five oceanographic cruises. This paper reviews the prehistoric and historic collapses that have occurred offshore of Antilles arc islands and summarizes ongoing research on emplacement processes.
Resumo:
This study examined the perceptual attunement of relatively skilled individuals to physical properties of striking implements in the sport of cricket. We also sought to assess whether utilising bats of different physical properties influenced performance of a specific striking action: the front foot straight drive. Eleven, skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development programme consented to participate in the study. Whist blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify their three most preferred bats for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two-thirds (63.7%) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action.
Resumo:
Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.
Resumo:
The making of the modern world has long been fuelled by utopian images that are blind to ecologi- cal reality. Botanical gardens are but one example – who typically portray themselves as miniature, isolated 'edens on earth', whereas they are now in many cases self-evidently also the vital ‘lungs’ of crowded cities, as well as critical habitats for threat- ened biodiversity. In 2010 the 'Remnant Emergency Art lab' set out to question utopian thinking through a creative provocation called the 'Botanical Gardens ‘X-Tension’ - an imagined city-wide, distributed, network of 'ecological gardens' suited to both bat and human needs, in order to ask, what now needs to be better understood, connected and therefore ultimately conserved.
Resumo:
Gesture interfaces are an attractive avenue for human-computer interaction, given the range of expression that people are able to engage when gesturing. Consequently, there is a long running stream of research into gesture as a means of interaction in the field of human-computer interaction. However, most of this research has focussed on the technical challenges of detecting and responding to people’s movements, or on exploring the interaction possibilities opened up by technical developments. There has been relatively little research on how to actually design gesture interfaces, or on the kinds of understandings of gesture that might be most useful to gesture interface designers. Running parallel to research in gesture interfaces, there is a body of research into human gesture, which would seem a useful source to draw knowledge that could inform gesture interface design. However, there is a gap between the ways that ‘gesture’ is conceived of in gesture interface research compared to gesture research. In this dissertation, I explore this gap and reflect on the appropriateness of existing research into human gesturing for the needs of gesture interface design. Through a participatory design process, I designed, prototyped and evaluated a gesture interface for the work of the dental examination. Against this grounding experience, I undertook an analysis of the work of the dental examination with particular focus on the roles that gestures play in the work to compare and discuss existing gesture research. I take the work of the gesture researcher McNeill as a point of focus, because he is widely cited within gesture interface research literature. I show that although McNeill’s research into human gesture can be applied to some important aspects of the gestures of dentistry, there remain range of gestures that McNeill’s work does not deal with directly, yet which play an important role in the work and could usefully be responded to with gesture interface technologies. I discuss some other strands of gesture research, which are less widely cited within gesture interface research, but offer a broader conception of gesture that would be useful for gesture interface design. Ultimately, I argue that the gap in conceptions of gesture between gesture interface research and gesture research is an outcome of the different interests that each community brings to bear on the research. What gesture interface research requires is attention to the problems of designing gesture interfaces for authentic context of use and assessment of existing theory in light of this.
Resumo:
This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
It is widely accepted in the literature on restorative justice that restorative practices emerged at least partly as a result of the recent shift towards recognising the rights of victims of crime, and increasing the involvement of victims in the criminal justice system. This article seeks to destabilise this claim. Although it accepts that there is a relationship between the emergence of a strong victims' rights movement and the emergence of restorative justice, it argues that this relationship is more nuanced, complex and contingent than advocates of restorative justice allow.
Resumo:
An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.
Resumo:
Ethical food movements are growing in number throughout Australia. Amongst these diverse movements are urban agriculture initiatives, which articulate a multitude of social and environmental values. Yet, despite the long history of production and exchange of food in urban areas, planners (and others) often overlook its significance. To assist in addressing this oversight, we take the case study of Melbourne to examine the ways in which participants in urban agriculture are re-imagining urban spaces and the future of agriculture and food systems in Australia. We demonstrate that urban food advocates' politics and practices both challenge and resist the enclosure of urban spaces. This creates new frontiers that transgress social, political, ecological and economic boundaries and edges. These transgressions or counter-enclosures articulate new visions for secure and just food systems and, in so doing, offer insights to assist planners in ensuring Australian cities support socially just and environmentally responsible food systems.