137 resultados para Bandpass filters
Resumo:
Introduction: An observer, looking sideways from a moving vehicle, while wearing a neutral density filter over one eye, can have a distorted perception of speed, known as the Enright phenomenon. The purpose of this study was to determine how the Enright phenomenon influences driving behaviour. Methods: A geometric model of the Enright phenomenon was developed. Ten young, visually normal, participants (mean age = 25.4 years) were tested on a straight section of a closed driving circuit and instructed to look out of the right side of the vehicle and drive at either 40 Km/h or 60 Km/h under the following binocular viewing conditions: with a 0.9 ND filter over the left eye (leading eye); 0.9 ND filter over the right eye (trailing eye); 0.9 ND filters over both eyes, and with no filters over either eye. The order of filter conditions was randomised and the speed driven recorded for each condition. Results: Speed judgments did not differ significantly between the two baseline conditions (no filters and both eyes filtered) for either speed tested. For the baseline conditions, when subjects were asked to drive at 60 Km/h they matched this speed well (61 ± 10.2 Km/h) but drove significantly faster than requested (51.6 ± 9.4 Km/h) when asked to drive at 40 Km/h. Subjects significantly exceeded baseline speeds by 8.7± 5.0 Km/h, when the trailing eye was filtered and travelled slower than baseline speeds by 3.7± 4.6 Km/h when the leading eye was filtered. Conclusions: This is the first quantitative study demonstrating how the Enright effect can influence perceptions of driving speed, and demonstrates that monocular filtering of an eye can significantly impact driving speeds, albeit to a lesser extent than predicted by geometric models of the phenomenon.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Practical stability is established in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have previously attempted to curb this complexity whilst maintaining global optimality. However, they provide no guarantee of being more efficient than exhaustive search. Inspired by recent work which reconstructs general trajectories using compact high-pass filters, we develop a dynamic programming approach which scales linearly in the number of frames, leveraging the intrinsically local nature of filter interactions. Extension to affine projection enables reconstruction without estimating cameras.
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.
Resumo:
In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.
Resumo:
Ceramsite plays a significant role as a biological aerated filter (BAF) in the treatment of wastewater. In this study, a mixture of goethite, sawdust and palygorskite clay was thermally treated to form magnetic porous ceramsite (MPC). An optimization experiment was conducted to measure the compressive strength of the MPC. X-ray diffraction (XRD), scanning electron microscopy (SEM), and polarizing microscopy (PM) characterized the pore structure of the MPC. The results show that a combination of goethite, sawdust and palygorskite clay with a mass ratio of 10:2:5 is suitable for the formation of MPC. The compressive strength of MPC conforms to the Chinese national industrial standard (CJ/T 299-2008) for wastewater treatment. The SEM and PM results also show that the uniform and interconnected pores in MPC were well suited for microbial growth. The MPC produced in this study can serve as a biomedium for advanced wastewater treatment.
Resumo:
This paper presents a prototype tracking system for tracking people in enclosed indoor environments where there is a high rate of occlusions. The system uses a stereo camera for acquisition, and is capable of disambiguating occlusions using a combination of depth map analysis, a two step ellipse fitting people detection process, the use of motion models and Kalman filters and a novel fit metric, based on computationally simple object statistics. Testing shows that our fit metric outperforms commonly used position based metrics and histogram based metrics, resulting in more accurate tracking of people.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Aims: This study investigated the effect of simulated visual impairment on the speed and accuracy of performance on a series of commonly used cognitive tests. ----- Methods: Cognitive performance was assessed for 30 young, visually normal subjects (M=22.0yrs ± 3.1 yrs) using the Digit Symbol Substitution Test (DSST), Trail Making Test (TMT) A and B and the Stroop Colour Word Test under three visual conditions: normal vision and two levels of visually degrading filters (VistechTM) administered in a random order. Distance visual acuity and contrast sensitivity were also assessed for each filter condition. ----- Results: The visual filters, which degraded contrast sensitivity to a greater extent than visual acuity, significantly increased the time to complete (p<0.05), but not the number of errors made, on the DSST and the TMT A and B and affected only some components of the Stroop test.----- Conclusions: Reduced contrast sensitivity had a marked effect on the speed but not the accuracy of performance on commonly used cognitive tests, even in young individuals; the implications of these findings are discussed.
Resumo:
Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.