233 resultados para Automatic speech recognition (ASR)
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.
Resumo:
Automatic speech recognition from multiple distant micro- phones poses significant challenges because of noise and reverberations. The quality of speech acquisition may vary between microphones because of movements of speakers and channel distortions. This paper proposes a channel selection approach for selecting reliable channels based on selection criterion operating in the short-term modulation spectrum domain. The proposed approach quantifies the relative strength of speech from each microphone and speech obtained from beamforming modulations. The new technique is compared experimentally in the real reverb conditions in terms of perceptual evaluation of speech quality (PESQ) measures and word error rate (WER). Overall improvement in recognition rate is observed using delay-sum and superdirective beamformers compared to the case when the channel is selected randomly using circular microphone arrays.
Resumo:
Speaker diarization is the process of annotating an input audio with information that attributes temporal regions of the audio signal to their respective sources, which may include both speech and non-speech events. For speech regions, the diarization system also specifies the locations of speaker boundaries and assign relative speaker labels to each homogeneous segment of speech. In short, speaker diarization systems effectively answer the question of ‘who spoke when’. There are several important applications for speaker diarization technology, such as facilitating speaker indexing systems to allow users to directly access the relevant segments of interest within a given audio, and assisting with other downstream processes such as summarizing and parsing. When combined with automatic speech recognition (ASR) systems, the metadata extracted from a speaker diarization system can provide complementary information for ASR transcripts including the location of speaker turns and relative speaker segment labels, making the transcripts more readable. Speaker diarization output can also be used to localize the instances of specific speakers to pool data for model adaptation, which in turn boosts transcription accuracies. Speaker diarization therefore plays an important role as a preliminary step in automatic transcription of audio data. The aim of this work is to improve the usefulness and practicality of speaker diarization technology, through the reduction of diarization error rates. In particular, this research is focused on the segmentation and clustering stages within a diarization system. Although particular emphasis is placed on the broadcast news audio domain and systems developed throughout this work are also trained and tested on broadcast news data, the techniques proposed in this dissertation are also applicable to other domains including telephone conversations and meetings audio. Three main research themes were pursued: heuristic rules for speaker segmentation, modelling uncertainty in speaker model estimates, and modelling uncertainty in eigenvoice speaker modelling. The use of heuristic approaches for the speaker segmentation task was first investigated, with emphasis placed on minimizing missed boundary detections. A set of heuristic rules was proposed, to govern the detection and heuristic selection of candidate speaker segment boundaries. A second pass, using the same heuristic algorithm with a smaller window, was also proposed with the aim of improving detection of boundaries around short speaker segments. Compared to single threshold based methods, the proposed heuristic approach was shown to provide improved segmentation performance, leading to a reduction in the overall diarization error rate. Methods to model the uncertainty in speaker model estimates were developed, to address the difficulties associated with making segmentation and clustering decisions with limited data in the speaker segments. The Bayes factor, derived specifically for multivariate Gaussian speaker modelling, was introduced to account for the uncertainty of the speaker model estimates. The use of the Bayes factor also enabled the incorporation of prior information regarding the audio to aid segmentation and clustering decisions. The idea of modelling uncertainty in speaker model estimates was also extended to the eigenvoice speaker modelling framework for the speaker clustering task. Building on the application of Bayesian approaches to the speaker diarization problem, the proposed approach takes into account the uncertainty associated with the explicit estimation of the speaker factors. The proposed decision criteria, based on Bayesian theory, was shown to generally outperform their non- Bayesian counterparts.
Improved speech recognition using adaptive audio-visual fusion via a stochastic secondary classifier
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.