21 resultados para Automatic data collection systems.
Resumo:
The objective of this chapter is to provide an overview of traffic data collection that can and should be used for the calibration and validation of traffic simulation models. There are big differences in availability of data from different sources. Some types of data such as loop detector data are widely available and used. Some can be measured with additional effort, for example, travel time data from GPS probe vehicles. Some types such as trajectory data are available only in rare situations such as research projects.
Resumo:
PURPOSE Every health care sector including hospice/palliative care needs to systematically improve services using patient-defined outcomes. Data from the national Australian Palliative Care Outcomes Collaboration aims to define whether hospice/palliative care patients' outcomes and the consistency of these outcomes have improved in the last 3 years. METHODS Data were analysed by clinical phase (stable, unstable, deteriorating, terminal). Patient-level data included the Symptom Assessment Scale and the Palliative Care Problem Severity Score. Nationally collected point-of-care data were anchored for the period July-December 2008 and subsequently compared to this baseline in six 6-month reporting cycles for all services that submitted data in every time period (n = 30) using individual longitudinal multi-level random coefficient models. RESULTS Data were analysed for 19,747 patients (46 % female; 85 % cancer; 27,928 episodes of care; 65,463 phases). There were significant improvements across all domains (symptom control, family care, psychological and spiritual care) except pain. Simultaneously, the interquartile ranges decreased, jointly indicating that better and more consistent patient outcomes were being achieved. CONCLUSION These are the first national hospice/palliative care symptom control performance data to demonstrate improvements in clinical outcomes at a service level as a result of routine data collection and systematic feedback.
Resumo:
Although there are many potential new insights to be gained through advancing research on the clients of male sex workers, significant social, ethical and methodological challenges to accessing this population exist. This research project case explores our attempts to recruit a population that does not typically form a cohesive or coherent 'community' and often avoids self-identifying to mitigate the stigma attached to buying sex. We used an arms-length recruitment campaign that focussed on directing potential participants to our study website, which could in turn lead them to participate in an anonymous telephone interview. Barriers to reaching male sex-work clients, however, demanded the evolution of our recruitment strategy. New technologies are part of the solution to accessing a hard-to-reach population, but they only work if researchers engage responsively. We also show how we conducted an in-depth interview with a client and discuss the value of using secondary data.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.