37 resultados para Automóveis - Comercialização - Belo Horizonte (MG)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium (Sr), Zinc (Zn), magnesium (Mg), and silicon (Si) are reported to be essential trace elements for the growth and mineralization of bone. We speculated that the combination of these bioactive elements in bioceramics may be effective to regulate the osteogenic property of boneforming cells. In this study, two Sr-containing silicate bioceramics, Sr2ZnSi2O7 (SZS) and Sr2MgSi2O7 (SMS), were prepared. The biological response of human bone marrow mesenchymal stem cells (BMSCs) to the two bioceramics (in the forms of powders and dense ceramic bulks) was systematically studied. In powder form, the effect of powder extracts on the viability and alkaline phosphatase (ALP) activity of BMSCs was investigated. In ceramic disc form, both direct and indirect coculture of BMSCs with ceramic discs were used to investigate their biological response, including attachment, proliferation, ALP activity, and bone-related genes expression. Beta-tricalcium phosphate (b-TCP) and akermanite (Ca2MgSi2O7, CMS) were used as control materials. The results showed that the Sr, Zn, and Si (or Sr, Mg, and Si)-containing ionic products from SZS and SMS powders enhanced ALP activity of BMSCs, compared to those from b-TCP. Both SZS and SMS ceramic discs supported the growth of BMSCs, and most importantly, significantly enhanced the ALP activity and bone-related genes expression of BMSCs as compared to b-TCP. The results suggest that the specific combination of bioactive ions (Sr, Zn, Si, e.g.) in bioceramics is a viable way to improve the biological performance of biomaterials, and the form of materials and surface properties were nonnegligible factors to influence cell response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimentally obtained Mg.SiO smokes were studied by analytical electron microscopy using the same samples that had been previously characterized by repeated infrared spectroscopy. Analytical electron microscopy shows that unannealed smokes contain some degree of microcrystallinity which increases with increased annealing for up to 30 hr. An SiO2 polymorph (tridymite) and MgO may form contemporaneously as a result of growth of forsterite (Mg2SiO4) microcrystallites in the initially nonstoichiometric smokes. After 4 hr annealing, forsterite and tridymite react to enstatite (MgSiO3). We suggest that infrared spectroscopy and X-ray diffraction analysis should be complemented by detailed analytical electron microscopy to detect budding crystallinity in vapor phase condensates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of Mg-5%AI alloys and its dependence with gain size and strain rate were investigated using nanoindentation. The grain sizes were successfully reduced below 100 nm via mechanical alloying method. It was found that the strain rate sensitivity increased with decreasing grain size. The smaller activation volumes and the plastic deformation mechanisms involving grain boundary activities are considered to contribute to the increase of strain rate sensitivity in the nanocrystalline alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2⋅4H2O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm−1 are assigned to the symmetric stretching mode of and units. Raman bands at 548, 564, 599 and 634 cm−1 are assigned to the ν4 bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm−1 and infrared bands at 2623, 2838, 3136 and 3185 cm−1 are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO2/4- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the m1 PO3/4- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the v3PO3/4- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the m4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the m2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbal Fructus Corni is a folk medicine with a long history of safe use for treating osteoporosis in postmenopausal women or elderly men in Asia. Sweroside is a bioactive herbal ingredient isolated from Fructus Corni, which has been widely used for the treatment of osteoporosis in traditional Chinese medicine (TCM). Unfortunately, the working mechanisms of this compound are difficult to determine and thus remain unclear. The aim of the study was performed to determine the potential molecular mechanism of the anti-osteoporotic effect of sweroside on the human MG-63 cells and rat osteoblasts. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of sweroside on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of osteocalcin were also assayed the cell differentiation. Sweroside significantly increased the proliferation of human MG-63 cells and rat osteoblasts (P<0.01). It increased the activity of ALP, and osteocalcin was also elevated in response to sweroside (P<0.05). Of note, flowcytometer assay showed that sweroside can attenuate and inhibit apoptosis. Sweroside has a direct osteogenic effect on the proliferation and differentiation of cultured human MG-63 cells and rat osteoblasts in vitro. These data will help in understanding the molecular mechanisms of therapeutic efficacy of sweroside, and highlight insights into drug discovery. In the current study, sweroside has been suggested to be a promising osteoporosis therapeutic natural product.