821 resultados para Australian native flowers
Resumo:
Carbon dioxide (CO2), as a primary product of combustion, is a known factor affecting climate change and global warming. In Australia, CO2 emissions from biomass burning are a significant contributor to total carbon in the atmosphere and therefore, it is important to quantify the CO2 emission factors from biomass burning in order to estimate their magnitude and impact on the Australian atmosphere. This paper presents the quantification of CO2 emission factors for five common tree species found in South East Queensland forests, as well as several grasses taken from savannah lands in the Northern Territory of Australia, under controlled ‘fast burning’ and ‘slow burning’ laboratory conditions. The results showed that CO2 emission factors varied according to the type of vegetation and burning conditions, with emission factors for fast burning being 2574 ± 254 g/kg for wood, 394 ± 40 g/kg for branches and leaves, and 2181 ± 120 g/kg for grass. Under slow burning conditions, the CO2 emission factors were 218 ± 20 g/kg for wood, 392± 80 g/kg for branches and leaves, and 2027 ± 809 g/kg for grass.
Resumo:
There is a limited evidence base which highlights the plight of Australian Aboriginal and Torres Strait Islander populations living in urban areas and the issues that impact on Indigenous achievements in education, health status, housing needs, rates of incarceration and the struggle for cultural recognition. This is despite over 70 % of all Aboriginal and Torres Strait Islander people in Australia now living in urban or regional urban areas (ABS 2008). The statistics demonstrate that living in urban centres is as much part of reality for Australian Aboriginal and Torres Strait Islander people as living in a remote discrete community. Using the capital city of Brisbane, Queensland as a case study, this paper will explore some of the issues that Aboriginal and Torres Strait Islander peoples face against a backdrop of the statistics and some of the current literature. It will additionally explore why there has been limited research with Aboriginal and Torres Strait Islander populations in urban areas and highlight some of the innovative research taking place which will begin to redress this gap. The research issues presented within this paper will resonate with some of the Native American and Indigenous movement patterns and associated issues additionally occurring in the United States of America, Canada and New Zealand.
Resumo:
The 2010 Native American Indigenous Studies Conference was held at The Westin La Paloma Resort, Tucson, Arizona, USA from 20-22 May. The conference was scholarly and interdisciplinary and intended for Indigenous and non-Indigenous scholars who work in American Indian/ Native American/ First Nations/ Aboriginal/ Indigenous Studies. The 2010 gathering attracted 768 registrations from the USA, Canada, Hawaii, Mexico, New Zealand and Australia and other countries. This paper is a personal reflection and overview of the 2010 Conference.
Resumo:
This chapter investigates the place of new media in Queensland in the light of the Australian curriculum. ‘Multimodal texts’ in English are being defined as largely electronically ‘created’ and yet restricted access to digital resources at the chalkface may preclude this work from happening. The myth of the ‘digital native’ (Prensky, 2007), combined with the reality of the ‘digital divide’ coupled with technophobia amongst some quite experienced teachers, responsible for implementing the curriculum, paints a picture of constraints. These constraints are due in part to protective state bans in Queensland on social networking sites and school bans on mobile phone use. Some ‘Generation next’ will have access to digital platforms for the purpose of designing texts at home and school, and others will not. Yet without adequate Professional Development for teachers and substantially increased ICT infrastructure funding for all schools, the way new media and multimodal opportunities are interpreted at state level in the curriculum may leave much to be desired in schools. This chapter draws on research that I recently conducted on the professional development needs of beginning teachers, as well as a critical reading of the ACARA policy documents.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
Background The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Results Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Conclusions Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats.
Resumo:
In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.
Resumo:
Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.
Resumo:
Poem
Resumo:
This thesis investigates patterns of evolution in a group of native Australo-Papuan rodents. Past climatic change and associated sea level fluctuations, and fragmentation of wet forests in eastern Australia has facilitated rapid radiation, diversification and speciation in this group. This study adds to our understanding of the evolution of Australia’s rainforest fauna and describes the evolutionary relationships of a new genus of Australian rodent.
Resumo:
Despite Australia being one of the wealthiest countries of the world, Australian Indigenous children have a health status and social circumstance comparable to developing countries. Indigenous infants have 10 times the mortality rate for respiratory conditions. The lower respiratory infection (LRI) rate in Australian Indigenous children is at least as high as that of children in developing countries; the frequency of hospitalisations of Indigenous infants is triple that of non-Indigenous Australian infants (201.7 vs. 62.6/1000, respectively). While Indigenous Australian children have many risk factors for LRIs described in developing countries, there is little specific data, and hence, evidence-based intervention points are yet to be identified. Efficacy of conjugate vaccines for common bacterial causes of pneumonia has been less marked in Indigenous children than that documented overseas. Gaps in the management and prevention of disease are glaring. Given the burden of LRI in Indigenous children and the association with long-term respiratory dysfunction, LRIs should be addressed as a matter of priority.
Resumo:
The aim of this on-going research is to interrogate the era of colonialism in Australia (1896-1966) and the denial of paid employment of Aboriginal women. The 1897 Aborigines Protection and the Restriction of the Sale of Opium Act witnessed thousands of Aboriginal people placed on Government run reserves and missions. This resulted in all aspects of their lives being controlled through state mechanisms. Under various Acts of Parliament, Aboriginal women were sent to privately owned properties to be utilised as ‘domestic servants’ through a system of forced indentured labour, which continued until the 1970’s. This paper discusses the hidden histories of these women through the use of primary sources documents including records from the Australian Department of Native Affairs and Department of Home and Health. This social history research reveals that the practice of removing Aboriginal women from their families at the age of 12 or 13 and to white families was more common practice than not. These women were often: not paid, worked up to 15 hour days, not allowed leave and subjected to many forms of abuse. Wages that were meant to be paid were re-directed to other others, including the Government. Whilst the retrieval of these ‘stolen wages’ is now an on-going issue resulting in the Queensland Government in 2002 offering AUS $2,000 to $4,000 in compensation for a lifetime of work, Aboriginal women were also asked to waive their legal right to further compensation. There are few documented histories of these Aboriginal women as told through the archives. This hidden Aboriginal Australian women’s history needs to be revealed to better understand the experiences and depth of misappropriation of Aboriginal women as domestic workers. In doing so, it also reveals a more accurate reflection of women’s work in Australia.
Resumo:
Economic competition between introduced and native aquaculture species is of interest for industry stakeholders since increased production can affect price formation if both aquaculture species are part of the same market or even substitutes. In this study, we focus on the Australian edible oyster industry, which is dominated by two major species—the native Sydney rock oyster (grown mainly in Queensland and New South Wales) and the non-native Pacific oyster (grown mainly in South Australia and Tasmania). We examine the integration of the Australian oyster market to determine if there exists a single or several markets. Short- and long-run own, cross-price and income flexibilities of demand are estimated for both species using an inverse demand system of equations. The results suggest that the markets for the two species are integrated. We found evidence that the development of the Pacific oyster industry has had an adverse impact on Sydney rock oyster prices. However, our results show that both species are not perfect substitutes. Demand for Sydney rock oysters is relatively inelastic in the long run, yet no long-run relationships can be identified for Pacific oysters, reflecting the developing nature of this sector.