204 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet Process mixture (DPM) model for this task. This model is defined by the placement of the Dirichlet Process (DP) on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson’s disease (PD) is considered, with symptom profiles collected using the Unified Parkinson’s Disease Rating Scale (UPDRS). Clustering, Dirichlet Process mixture, Parkinson’s disease, UPDRS.
Resumo:
A new transdimensional Sequential Monte Carlo (SMC) algorithm called SM- CVB is proposed. In an SMC approach, a weighted sample of particles is generated from a sequence of probability distributions which ‘converge’ to the target distribution of interest, in this case a Bayesian posterior distri- bution. The approach is based on the use of variational Bayes to propose new particles at each iteration of the SMCVB algorithm in order to target the posterior more efficiently. The variational-Bayes-generated proposals are not limited to a fixed dimension. This means that the weighted particle sets that arise can have varying dimensions thereby allowing us the option to also estimate an appropriate dimension for the model. This novel algorithm is outlined within the context of finite mixture model estimation. This pro- vides a less computationally demanding alternative to using reversible jump Markov chain Monte Carlo kernels within an SMC approach. We illustrate these ideas in a simulated data analysis and in applications.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.
Resumo:
The issue of using informative priors for estimation of mixtures at multiple time points is examined. Several different informative priors and an independent prior are compared using samples of actual and simulated aerosol particle size distribution (PSD) data. Measurements of aerosol PSDs refer to the concentration of aerosol particles in terms of their size, which is typically multimodal in nature and collected at frequent time intervals. The use of informative priors is found to better identify component parameters at each time point and more clearly establish patterns in the parameters over time. Some caveats to this finding are discussed.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.
Resumo:
This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modeling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modeling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modeling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performace of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made.
Resumo:
Obtaining attribute values of non-chosen alternatives in a revealed preference context is challenging because non-chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non-chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non-chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non-chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non-chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones.
Resumo:
In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.
Resumo:
Background Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in cancer survival. Multilevel models assume independent geographical areas, whereas spatial models explicitly incorporate geographical correlation, often via a conditional autoregressive prior. However the relative merits of these methods for large population-based studies have not been explored. Using a case-study approach, we report on the implications of using multilevel and spatial survival models to study geographical inequalities in all-cause survival. Methods Multilevel discrete-time and Bayesian spatial survival models were used to study geographical inequalities in all-cause survival for a population-based colorectal cancer cohort of 22,727 cases aged 20–84 years diagnosed during 1997–2007 from Queensland, Australia. Results Both approaches were viable on this large dataset, and produced similar estimates of the fixed effects. After adding area-level covariates, the between-area variability in survival using multilevel discrete-time models was no longer significant. Spatial inequalities in survival were also markedly reduced after adjusting for aggregated area-level covariates. Only the multilevel approach however, provided an estimation of the contribution of geographical variation to the total variation in survival between individual patients. Conclusions With little difference observed between the two approaches in the estimation of fixed effects, multilevel models should be favored if there is a clear hierarchical data structure and measuring the independent impact of individual- and area-level effects on survival differences is of primary interest. Bayesian spatial analyses may be preferred if spatial correlation between areas is important and if the priority is to assess small-area variations in survival and map spatial patterns. Both approaches can be readily fitted to geographically enabled survival data from international settings
Resumo:
description and analysis of geographically indexed health data with respect to demographic, environmental, behavioural, socioeconomic, genetic, and infectious risk factors (Elliott andWartenberg 2004). Disease maps can be useful for estimating relative risk; ecological analyses, incorporating area and/or individual-level covariates; or cluster analyses (Lawson 2009). As aggregated data are often more readily available, one common method of mapping disease is to aggregate the counts of disease at some geographical areal level, and present them as choropleth maps (Devesa et al. 1999; Population Health Division 2006). Therefore, this chapter will focus exclusively on methods appropriate for areal data...
Resumo:
Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.