77 resultados para Arafura Shelf
Resumo:
This paper introduces an energy-efficient Rate Adaptive MAC (RA-MAC) protocol for long-lived Wireless Sensor Networks (WSN). Previous research shows that the dynamic and lossy nature of wireless communication is one of the major challenges to reliable data delivery in a WSN. RA-MAC achieves high link reliability in such situations by dynamically trading off radio bit rate for signal processing gain. This extra gain reduces the packet loss rate which results in lower energy expenditure by reducing the number of retransmissions. RA-MAC selects the optimal data rate based on channel conditions with the aim of minimizing energy consumption. We have implemented RA-MAC in TinyOS on an off-the-shelf sensor platform (TinyNode), and evaluated its performance by comparing RA-MAC with state-ofthe- art WSN MAC protocol (SCP-MAC) by experiments.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) monitor network traffic for signs of malicious activities that have the potential to disrupt entire network infrastructures and services. NIDS can only operate when the network traffic is available and can be extracted for analysis. However, with the growing use of encrypted networks such as Virtual Private Networks (VPNs) that encrypt and conceal network traffic, a traditional NIDS can no longer access network traffic for analysis. The goal of this research is to address this problem by proposing a detection framework that allows a commercial off-the-shelf NIDS to function normally in a VPN without any modification. One of the features of the proposed framework is that it does not compromise on the confidentiality afforded by the VPN. Our work uses a combination of Shamir’s secret-sharing scheme and randomised network proxies to securely route network traffic to the NIDS for analysis. The detection framework is effective against two general classes of attacks – attacks targeted at the network hosts or attacks targeted at framework itself. We implement the detection framework as a prototype program and evaluate it. Our evaluation shows that the framework does indeed detect these classes of attacks and does not introduce any additional false positives. Despite the increase in network overhead in doing so, the proposed detection framework is able to consistently detect intrusions through encrypted networks.
Resumo:
Coral reefs are biologically complex ecosystems that support a wide variety of marine organisms. These are fragile communities under enormous threat from natural and human-based influences. Properly assessing and measuring the growth and health of reefs is essential to understanding impacts of ocean acidification, coastal urbanisation and global warming. In this paper, we present an innovative 3-D reconstruction technique based on visual imagery as a non-intrusive, repeatable, in situ method for estimating physical parameters, such as surface area and volume for efficient assessment of long-term variability. The reconstruction algorithms are presented, and benchmarked using an existing data set. We validate the technique underwater, utilising a commercial-off-the-shelf camera and a piece of staghorn coral, Acropora cervicornis. The resulting reconstruction is compared with a laser scan of the coral piece for assessment and validation. The comparison shows that 77% of the pixels in the reconstruction are within 0.3 mm of the ground truth laser scan. Reconstruction results from an unknown video camera are also presented as a segue to future applications of this research.
Resumo:
A program’s development and implementation in a higher education institution is usually launched with great fanfare, goodwill and a huge effort on the part of the whole development team to ensure a worthwhile cohesive set of learning experiences aligned to the desired course learning outcomes. It is often not long before the glue starts to come unstuck arising from staffing changes, subtle migration of course resources, opportunistic inclusions of “off the shelf” or unit based innovative teaching and learning approaches, and perhaps general poor attention to detail with regard to the impact of new introductions and electives. This paper presents an initial investigation into the elusive goal of achieving course cohesion. The authors consider building cohesion into a course as it is being designed through identified cohesion factors and in sustaining course cohesion through active leadership.
Resumo:
Grocery shopping is an essential and routine activity. Although long regarded the responsibility of the female spouse, modern social and demographic shifts are causing men to become more engaged in this task. This is the first study to analyse gender differences with respect to the criterion of grocery product price within an Australian supermarket retail environment. A stratified sample of 140 male and 140 female grocery shoppers was surveyed. Results showed that men considered price attributes of products as being significantly lower in importance than did women. Additionally, men displayed lower levels of price nvolvement, reported referencing shelf price to a lesser extent, and gave lesser consideration to promotional tactics focusing on low price. Although men on average buy fewer items than do women, they spend more money for each item they purchase. This higher expenditure per item appears to be driven, at least in part, by a lack of price referencing. This research has implications for gender studies and consumer behaviour disciplines in relation to grocery shopping.
Resumo:
In natural estuaries, scalar diffusion and dispersion are driven by turbulence. In the present study, detailed turbulence measurements were conducted in a small subtropical estuary with semi-diurnal tides under neap tide conditions. Three acoustic Doppler velocimeters were installed mid-estuary at fixed locations close together. The units were sampled simultaneously and continuously at relatively high frequency for 50 h. The results illustrated the influence of tidal forcing in the small estuary, although low frequency longitudinal velocity oscillations were observed and believed to be induced by external resonance. The boundary shear stress data implied that the turbulent shear in the lower flow region was one order of magnitude larger than the boundary shear itself. The observation differed from turbulence data in a laboratory channel, but a key feature of natural estuary flow was the significant three dimensional effects associated with strong secondary currents including transverse shear events. The velocity covariances and triple correlations, as well as the backscatter intensity and covariances, were calculated for the entire field study. The covariances of the longitudinal velocity component showed some tidal trend, while the covariances of the transverse horizontal velocity component exhibited trends that reflected changes in secondary current patterns between ebb and flood tides. The triple correlation data tended to show some differences between ebb and flood tides. The acoustic backscatter intensity data were characterised by large fluctuations during the entire study, with dimensionless fluctuation intensity I0b =Ib between 0.46 and 0.54. An unusual feature of the field study was some moderate rainfall prior to and during the first part of the sampling period. Visual observations showed some surface scars and marked channels, while some mini transient fronts were observed.
Resumo:
Much has been said and documented about the key role that reflection can play in the ongoing development of e-portfolios, particularly e-portfolios utilised for teaching and learning. A review of e-portfolio platforms reveals that a designated space for documenting and collating personal reflections is a typical design feature of both open source and commercial off-the-shelf software. Further investigation of tools within e-portfolio systems for facilitating reflection reveals that, apart from enabling personal journalism through blogs or other writing, scaffolding tools that encourage the actual process of reflection are under-developed. Investigation of a number of prominent e-portfolio projects also reveals that reflection, while presented as critically important, is often viewed as an activity that takes place after a learning activity or experience and not intrinsic to it. This paper assumes an alternative, richer conception of reflection: a process integral to a wide range of activities associated with learning, such as inquiry, communication, editing, analysis and evaluation. Such a conception is consistent with the literature associated with ‘communities of practice’, which is replete with insight into ‘learning through doing’, and with a ‘whole minded’ approach to inquiry. Thus, graduates who are ‘reflective practitioners’ who integrate reflection into their learning will have more to offer a prospective employer than graduates who have adopted an episodic approach to reflection. So, what kinds of tools might facilitate integrated reflection? This paper outlines a number of possibilities for consideration and development. Such tools do not have to be embedded within e-portfolio systems, although there are benefits in doing so. In order to inform future design of e-portfolio systems this paper presents a faceted model of knowledge creation that depicts an ‘ecology of knowing’ in which interaction with, and the production of, learning content is deepened through the construction of well-formed questions of that content. In particular, questions that are initiated by ‘why’ are explored because they are distinguished from the other ‘journalist’ questions (who, what, when, where, and where) in that answers to them demand explanative, as opposed to descriptive, content. They require a rationale. Although why questions do not belong to any one genre and are not simple to classify — responses can contain motivational, conditional, causal, and/or existential content — they do make a difference in the acquisition of understanding. The development of scaffolding that builds on why-questioning to enrich learning is the motivation behind the research that has informed this paper.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.
Resumo:
In this wall-mounted sculpture, speakers are mounted into a shelf-like object finished with timber veneer. The speakers play a corny groove stock music soundtrack. On top of the shelf sits a digital photographic image approximating a fireplace floating against a colour-gradient background. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography, digital graphics and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.