292 resultados para Antennas (Electronics)
Resumo:
A method for prediction of the radiation pattern of N strongly coupled antennas with mismatched sources is presented. The method facilitates fast and accurate design of compact arrays. The prediction is based on the measured N-port S parameters of the coupled antennas and the N active element patterns measured in a 50 ω environment. By introducing equivalent power sources, the radiation pattern with excitation by sources with arbitrary impedances and various decoupling and matching networks (DMN) can be accurately predicted without the need for additional measurements. Two experiments were carried out for verification: pattern prediction for parasitic antennas with different loads and for antennas with DMN. The difference between measured and predicted patterns was within 1 to 2 dB.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
A benzothiadiazole end-capped small molecule 3,6-bis(5-(benzo[c][1,2,5] thiadiazol-4-yl)thiophen-2-yl)-2,5-bis(2-butyloctyl)pyrrolo[3,4-c]pyrrole-1, 4(2H,5H)-dione (BO-DPP-BTZ) using a fused aromatic moiety DPP (at the centre) is designed and synthesized. BO-DPP-BTZ is a donor-acceptor-donor (D-A-D) structure which possesses a band gap of 1.6 eV and exhibits a strong solid state ordering inferred from ∼120 nm red shift of the absorption maxima from solution to thin film. Field-effect transistors utilizing a spin coated thin film of BO-DPP-BTZ as an active layer exhibited a hole mobility of 0.06 cm 2 V-1 s-1. Solution-processed bulk heterojunction organic photovoltaics employing a blend of BO-DPP-BTZ and [70]PCBM demonstrated a power conversion efficiency of 0.9%.
Resumo:
(Equation Presented). A series of star-shaped organic semiconductors have been synthesized from 1,3,6,8-tetrabromopyrene. The materials are soluble in common organic solvents allowing for solution processing of devices such as light-emitting diodes (OLEDs). One of the materials, 1,3,6,8-tetrakis(4- butoxyphenyl)pyrene, has been used as the active emitting layer in simple solution-processed OLEDs with deep blue emission (CIE = 0.15, 0.18) and maximum efficiencies and brightness levels of 2.56 cd/A and >5000 cd/m2, respectively.
Resumo:
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.
Resumo:
Tight networks of interwoven carbon nanotube bundles are formed in our highly conductive composite. The composite possesses propertiessuggesting a two-dimensional percolative network rather than other reported dispersions displaying three-dimensional networks. Binding nanotubes into large but tight bundles dramatically alters the morphology and electronic transport dynamics of the composite. This enables itto carry higher levels of charge in the macroscale leading to conductivities as high as 1600 S/cm. We now discuss in further detail, the electronic and physical properties of the nanotube composites through Raman spectroscopy and transmission electron microscopy analysis. When controlled and usedappropriately, the interesting properties of these composites reveal their potential for practical device applications. For instance, we used this composite to fabricate coatings, whic improve the properties of an electromagnetic antenna/amplifier transducer. The resulting transducer possesses a broadband range up to GHz frequencies. A strain gauge transducer was also fabricated using changes in conductivity to monitor structural deformations in the composite coatings.
Resumo:
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Resumo:
Major advances in power electronics during recent years have prompted considerable interest within the traction community. The capability of new technologies to reduce the AC railway networks' effect on power quality and improve their supply efficiency is expected to significantly decrease the cost of electric rail supply systems. Of particular interest are Static Frequency Converter (SFC), Rail Power Conditioner (RPC), High Voltage Direct Current (HVDC) and Energy Storage Systems (ESS) solutions. Substantial impacts on future feasibility of railway electrification are anticipated. Aurizon, Australia's largest heavy haul railway operator, has recently commissioned the world's first 50Hz/50Hz SFC installation and is currently investigating SFC, RPC, HVDC and ESS solutions. This paper presents a summary of current and emerging technologies with a particular focus on the potential techno-economic benefits.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.