158 resultados para Anisotropic-directional hardening
Resumo:
Matrix converter (MC) based bi-directional inductive power transfer (BD-IPT) systems are gaining popularity as an efficient and reliable technique with single stage grid integration as opposed to two stage grid integration of conventional grid connected BD-IPT systems. However MCs are invariably rich in harmonics and thus affect both power quality and power factor on the grid side. This paper proposes a mathematical model through which the grid side harmonics of MC based BD-IPT systems can accurately be estimated. The validity of the proposed mathematical model is verified using simulated results of a 3 kW BD-IPT system and results suggest that the MC based BD-IPT systems have a better power factor with higher power quality over conventional grid connected rectifier based systems.
Resumo:
This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.
Resumo:
The paper analyses technical efficiency of the Japanese banks from 2000 to 2007. The estimation technique is based on the Russell directional distance function that takes into consideration not only desirable outputs but also an undesirable output that is represented by non-performing loans (NPLs). The results indicate that NPLs remain a significant burden as for banks' performance. We show that banks' inputs have to be utilised more efficiently, particularly labour and premises. We also argue that a further restructuring process is needed in the segment of Regional Banks. We conclude that the Japanese banking system is still far away from being fully consolidated and restructured.
Resumo:
E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of ∼63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter.
Resumo:
We present a rigorous validation of the analyticalAmadei solution for the stress concentration around arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients β11 and β55 are not equal. It is shown from theoretical considerations and published experimental data that the β11 and β55 are not equal for realistic rocks. Second, we develop a 3D finite-element elastic model within a hybrid analyticalnumerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic and transverse isotropic symmetries. It is concluded that the analytical Amadei solution is valid with no restrictions on the borehole orientation or elastic anisotropy symmetry.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wetmechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.
Resumo:
Objective: To study the anisotropic mechanical properties of the thoracic aorta in porcine. Methods: Twenty-one porcine thoracic aortas were collected and categorized into three groups. The aortas were then cut through in their axial directions and expanded into two-dimensional planes. Then, by setting the length direction of the planar aortas (i.e., axial directions of the aortas) as 0°, each planar aorta was counterclockwisely cut into 8 samples with orientation of 30°, 45°, 60°, 90°, 120°, 135°, 150° and 180°, respectively. Finally, the uniaxial tensile tests were applied on three groups of samples at the loading rates of 1, 5 and 10 mm/min, respectively, to obtain the elastic modulus and ultimate stress of the aorta in different directions and at different loading rates. Results: The stress-strain curves exhibited different viscoelastic behaviors. With the increase of sample orientations, the elastic modulus gradually increased from 30°, reached the maximum value at 90°, and then gradually decreased till 180°. The variation trend of ultimate stress was similar to that of elastic modulus. Moreover, different loading rates showed a significant influence on the results of elastic modulus and ultimate stress, but a weak influence on the anisotropic degree. Conclusions: The porcine thoracic aorta is highly anisotropic. This research finding provides parameter references for assignment of material properties in finite element modeling, and is significant for understanding biomechanical properties of the arteries.
Resumo:
The objective of this paper is to provide a more comprehensive e±ciency measure to estimate the performance of OECD and non-OECD countries. A Russell directional distance function that appropriately credits the decision-making unit not only for increase in desirable outputs but also for the decrease of undesirable outputs is derived from the proposed weighted Russell directional distance model. The method was applied to a panel of 116 countries from 1992 to 2010. This framework also decomposes the comprehensive efficiency measure into individual input/ output components' inefficiency scores that are useful for policy making. The results reveal that the OECD countries perform better than the non-OECD countries in overall, goods,labor and capital efficiencies, but worse in bad and energy efficiencies.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3, 4. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10−300, 2.1 × 10−6, 2.5 × 10−10 and 1.8 × 10−10, respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months’ less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5, 6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Resumo:
Following the spirit of the enhanced Russell graph measure, this paper proposes an enhanced Russell-based directional distance measure (ERBDDM) model for dealing with desirable and undesirable outputs in data envelopment analysis (DEA) and allowing some inputs and outputs to be zero. The proposed method is analogous to the output oriented slacks-based measure (OSBM) and directional output distance function approach because it allows the expansion of desirable outputs and the contraction of undesirable outputs. The ERBDDM is superior to the OSBM model and traditional approach since it is not only able to identify all the inefficiency slacks just as the latter, but also avoids the misperception and misspecification of the former, which fails to identify null-jointness production of goods and bads. The paper also imposes a strong complementary slackness condition on the ERBDDM model to deal with the occurrence of multiple projections. Furthermore, we use the Penn Table data to help us explore our new approach in the context of environmental policy evaluations and guidance for performance improvements in 111 countries.
Resumo:
Research on social networking sites like Facebook is emerging but sparse. This exploratory study investigates the value users derive from self-described ‘cool’ Facebook applications, and explores the features that either encourage or discourage users to recommend applications to their friends. The concepts of value and cool are explored in a social networking context. Our qualitative data reveals consumers derive a combination of functional value along with either social or emotional value from the applications. Female Facebook users indicate self-expression as important motivators, while males tend to use Facebook applications to socially compete. Three broad categories emerged for application features; symmetrical features can both encourage or discourage recommendation, polar features where different levels of the same feature encourage or discourage, and uni-directional features only encourage or discourage but not both. Recommending or not recommending an application tends to be the result of a combination of features and context, rather than one feature in isolation.
Resumo:
This study established that the core principle underlying categorisation of activities have the potential to provide more comprehensive outcomes than the recognition of activities because it takes into consideration activities other than directional locomotion.
Resumo:
The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.