21 resultados para Analgesia - Controle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To evaluate quality of care delivered to patients presenting to the emergency department (ED) with pain and managed by emergency nurse practitioners by measuring: 1) Evaluate time to analgesia from initial presentation 2) Evaluate time from being seen to next analgesia 3) Pain score documentation Background The delivery of quality care in the emergency department (ED) is emerging as one of the most important service indicators being measured by health services. Emergency nurse practitioner services are designed to improve timely, quality care for patients. One of the goals of quality emergency care is the timely and effective delivery of analgesia for patients. Timely analgesia is an important indicator of ED service performance. Methods A retrospective explicit chart review of 128 consecutive patients with pain and managed by emergency nurse practitioners was conducted. Data collected included demographics, presenting complaint, pain scores, and time to first dose of analgesia. Patients were identified from the ED Patient Information System (Cerner log) and data were extracted from electronic medical records Results Pain scores were documented in 67 (52.3%; 95% CI: 43.3-61.2) patients. The median time to analgesia from presentation was 60.5 (IQR 30-87) minutes, with 34 (26.6%; 95% CI: 19.1-35.1) patients receiving analgesia within 30 minutes of presentation to hospital. There were 22 (17.2%; 95% CI: 11.1-24.9) patients who received analgesia prior to assessment by a nurse practitioner. Among patients that received analgesia after assessment by a nurse practitioner, the median time to analgesia after assessment was 25 (IQR 12-50) minutes, with 65 (61.3%; 95% CI: 51.4-70.6) patients receiving analgesia within 30 minutes of assessment. Conclusions The majority of patients assessed by nurse practitioners received analgesia within 30 minutes after assessment. However, opportunities for substantial improvement in such times along with documentation of pain scores were identified and will be targeted in future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To identify the prevalence of and risk factors for inadvertent hypothermia after procedures performed with procedural sedation and analgesia in a cardiac catheterisation laboratory. Design Single-centre, prospective observational study. Setting Tertiary care private hospital in Australia. Participants A convenience sample of 399 patients undergoing elective procedures with procedural sedation and analgesia were included. Propofol infusions were used when an anaesthetist was present. Otherwise, bolus doses of either midazolam or fentanyl or a combination of these medications was used. Interventions None Measurements and main results Hypothermia was defined as a temperature <36.0° Celsius. Multivariate logistic regression was used to identify risk factors. Hypothermia was present after 23.3% (n=93; 95% confidence interval [CI] 19.2%-27.4%) of 399 procedures. Sedative regimens with the highest prevalence of hypothermia were any regimen that included propofol (n=35; 40.2%; 95% CI 29.9%-50.5%) and the use of fentanyl combined with midazolam (n=23; 20.3%; 95% CI 12.9%-27.7%). Difference in mean temperature from pre to post-procedure was -0.27°C (Standard deviation [SD] 0.45). Receiving propofol (odds ratio [OR] OR 4.6 95% CI 2.5-8.6), percutaneous coronary intervention (OR 3.2 95% CI 1.7-5.9), body mass index <25 (OR 2.5 95% CI 1.4-4.4) and being hypothermic prior to the procedure (OR 4.9; 95% CI 2.3-10.8) were independent predictors of post-procedural hypothermia. Conclusions A moderate prevalence of hypothermia was observed. The small absolute change in temperature observed may not be a clinically important amount. More research is needed to increase confidence in our estimates of hypothermia in sedated patients and its impact on clinical outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The rapid uptake of nurse practitioner (NP) services in Australia has outpaced evaluation of this service model. A randomized controlled trial was conducted to compare the effectiveness of NP service versus standard medical care in the emergency department (ED) of a major referral hospital in Australia. Methods Patients presenting with pain were randomly assigned to receive either standard ED medical care or NP care. Primary investigators were blinded to treatment allocation for data analyses. The primary outcome measure was the proportion of patients receiving analgesia within 30 minutes from being seen by care group. Secondary outcome measures were time to analgesia from presentation and documentation of and changes in pain scores. Results There were 260 patients randomized; 128 received standard care (medical practitioner led), and 130 received NP care. Two patients needed to be excluded due to incomplete consent forms. The proportion of patients who received analgesia within 30 minutes from being seen was 49.2% (n = 64) in the NP group and 29.7% (n = 38) in the standard group, a difference of 19.5% (95% confidence interval [CI] = 7.9% to 31.2%; p = 0.001). Of 165 patients who received analgesia, 64 (84.2%) received analgesia within 30 minutes in the NP group compared to 38 (42.7%) in the standard care group, a difference in proportions of 41.5% (95% CI = 28.3% to 54.7%; p < 0.001). The mean (±SD) time from being seen to analgesia was 25.4 (±39.2) minutes for NP care and 43.0 (±35.5) minutes for standard care, a difference of 17.6 minutes (95% CI = 6.1 to 29.1 minutes; p = 0.003). There was a difference in the median change in pain score of 0.5 between care groups, but this was not statistically significant (p = 0.13). Conclusions Nurse practitioner service effectiveness was demonstrated through superior performance in achieving timely analgesia for ED patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background An important potential clinical benefit of using capnography monitoring during procedural sedation and analgesia (PSA) is that this technology could improve patient safety by reducing serious sedation-related adverse events, such as death or permanent neurological disability, which are caused by inadequate oxygenation. The hypothesis is that earlier identification of respiratory depression using capnography leads to a change in clinical management that prevents hypoxaemia. As inadequate oxygenation/ventilation is the most common reason for injury associated with PSA, reducing episodes of hypoxaemia would indicate that using capnography would be safer than relying on standard monitoring alone. Methods/design The primary objective of this review is to determine whether using capnography during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). A secondary objective of this review is to determine whether changes in the clinical management of sedated patients are the mediating factor for any observed impact of capnography monitoring on the rate of hypoxaemia. The potential adverse effect of capnography monitoring that will be examined in this review is the rate of inadequate sedation. Electronic databases will be searched for parallel, crossover and cluster randomised controlled trials comparing the use of capnography with standard monitoring alone during PSA that is administered in the hospital setting. Studies that included patients who received general or regional anaesthesia will be excluded from the review. Non-randomised studies will be excluded. Screening, study selection and data extraction will be performed by two reviewers. The Cochrane risk of bias tool will be used to assign a judgment about the degree of risk. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of capnography monitoring during PSA within hospital settings. Systematic review registration: PROSPERO CRD42015023740