18 resultados para Amputee


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Over the last two decades, Transcutaneous Bone-Anchored Prosthesis (TCBAP) has proven to be an effective alternative for prosthetic attachment for above knee amputees, particularly for individuals suffering from socket interface related complications. [1-17] Amputees with a very short femoral residuum (<15 cm) are at a considerable higher risk for these complications as well as high risk of implant failure, if they underwent a typical TCBAP due to the relatively small bony-implant contact leading to a need of a novel technique. Aim A. To describe the surgical procedure combining THR with TCBAP for the first time; and B. To present preliminary data on potential risks and benefits with assessment of clinical and functional outcomes at follow up Method We used a TCBAP connected to the stem of a Total Hip Replacement (THR) prosthesis enabling the femoral residuum and the hip joint to act as weight sharing structures by transferring the load directly to the pelvis. We performed a tri-polar THR connected to a custom made TCBAP at the first stage followed by creating a skin implant interface as a second stage. We retrospectively reviewed three cases of transfemoral amputations presenting with extremely short femoral residuum. Patients were assessed clinically and functionally including standard measures of health-related quality of life, amputee mobility predictor tool, ambulation tests and actual activity level. Progress was monitored for 6-24 months. Results Clinical outcomes including adverse events show no major complications. Functional outcomes improved for all participants as early as 6 months follow up. All cases were wheelchair bound preoperatively (K0 – AMPRO) improved to walking with One stick (K3 – AMPRO) at 3 months follow up. Discussion & Conclusion THR and TCBAP were combined for the first time in this proof-of-concept case series. The preliminary outcomes indicated that this procedure is potentially a safe and effective alternative despite the theoretical increase in risk of ascending infection through the skin-implant interface to the external environment for this patient group. We suggest larger comparative series to further validate these results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The purpose of this presentation is to outline the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives are • To highlight the need for categorisation of activities of daily living • To present a categorization of load regime applied on residuum, • To present some descriptors of the four types of activity that could be detected, • To provide an example the results for a case. Methods The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The load applied on the residuum was divided in four types of activities corresponding to inactivity, stationary loading, localized locomotion and directional locomotion as detailed in previously publications. Results The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Discussion Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.