20 resultados para Alignments.
Resumo:
Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.
Resumo:
Whole genome sequences are generally accepted as excellent tools for studying evolutionary relationships. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignments could not be directly applied to the whole-genome comparison and phylogenomic studies. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. The “distances” used in these alignment-free methods are not proper distance metrics in the strict mathematical sense. In this study, we first review them in a more general frame — dissimilarity. Then we propose some new dissimilarities for phylogenetic analysis. Last three genome datasets are employed to evaluate these dissimilarities from a biological point of view.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.
Resumo:
In this paper we tackle the problem of efficient video event detection. We argue that linear detection functions should be preferred in this regard due to their scalability and efficiency during estimation and evaluation. A popular approach in this regard is to represent a sequence using a bag of words (BOW) representation due to its: (i) fixed dimensionality irrespective of the sequence length, and (ii) its ability to compactly model the statistics in the sequence. A drawback to the BOW representation, however, is the intrinsic destruction of the temporal ordering information. In this paper we propose a new representation that leverages the uncertainty in relative temporal alignments between pairs of sequences while not destroying temporal ordering. Our representation, like BOW, is of a fixed dimensionality making it easily integrated with a linear detection function. Extensive experiments on CK+, 6DMG, and UvA-NEMO databases show significant performance improvements across both isolated and continuous event detection tasks.
Resumo:
The incidence of human infections by the fungal pathogen Candida species has been increasing in recent years. Enolase is an essential protein in fungal metabolism. Sequence data is available for human and a number of medically important fungal species. An understanding of the structural and functional features of fungal enolases may provide the structural basis for their use as a target for the development of new anti-fungal drugs. We have obtained the sequence of the enolase of Candida krusei (C. krusei), as it is a significant medically important fungal pathogen. We have then used multiple sequence alignments with various enolase isoforms in order to identify C. krusei specific amino acid residues. The phylogenetic tree of enolases shows that the C. krusei enolase assembles on the tree with the fungal genes. Importantly, C. krusei lacks four amino acids in the active site compared to human enolase, as revealed by multiple sequence alignments. These differences in the substrate binding site may be exploited for the design of new anti-fungal drugs to selectively block this enzyme. The lack of the important amino acids in the active site also indicates that C. krusei enolase might have evolved as a member of a mechanistically diverse enolase superfamily catalying somewhat different reactions.