244 resultados para Air quality management
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Process modeling is a central element in any approach to Business Process Management (BPM). However, what hinders both practitioners and academics is the lack of support for assessing the quality of process models – let alone realizing high quality process models. Existing frameworks are highly conceptual or too general. At the same time, various techniques, tools, and research results are available that cover fragments of the issue at hand. This chapter presents the SIQ framework that on the one hand integrates concepts and guidelines from existing ones and on the other links these concepts to current research in the BPM domain. Three different types of quality are distinguished and for each of these levels concrete metrics, available tools, and guidelines will be provided. While the basis of the SIQ framework is thought to be rather robust, its external pointers can be updated with newer insights as they emerge.
Resumo:
This paper presents the results of a pilot study examining the factors that impact most on the effective implementation of, and improvement to, Quality Mangement Sytems (QMSs) amongst Indonesian construction companies. Nine critical factors were identified from an extensive literature review, and a survey was conducted of 23 respondents from three specific groups (Quality Managers, Project Managers, and Site Engineers) undertaking work in the Indonesian infrastructure construction sector. The data has been analyzed initially using simple descriptive techniques. This study reveals that different groups within the sector have different opinions of the factors regardless of the degree of importance of each factor. However, the evaluation of construction project success and the incentive schemes for high performance staff, are the two factors that were considered very important by most of the respondents in all three groups. In terms of their assessment of tools for measuring contractor’s performance, additional QMS guidelines, techniques related to QMS practice provided by the Government, and benchmarking, a clear majority in each group regarded their usefulness as ‘of some importance’.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
This paper discusses the level of effectiveness of quality principles and quality management system implementation and the relationship with performance of ISO9000 certified Indonesian contractors. It also discusses the statistical relationship between quality management systems (QMSs) and key performance indicators (KPIs) amongst a large sample of Indonesian construction companies. Data collected is from questionnaire surveys involving Quality Managers, Managers, and Project and Site Engineers representing 77 different companies. Results indicate that even though some contractors have not yet effectively implemented an effective QMS, most of the KPIs of respondent companies are still at the level of high performance. The statistical results show that the relationship between variables of ISO9000 QMS principles and contractors’ KPIs is significant. These results suggest that an increment in the implementation level of QMS principles can increase KPIs, however that much effort is still required for Indonesian contractors to fully effectively implement QMS principles and thus substantially improve performance against KPIs.
Resumo:
[Quality Management in Construction Projects by Abdul Razzak Rumane, CRC Press, Boca Raton, FL, 2011, 434 pp, ISBN 9781439838716] Issues of quality management, quality control and performance against specification have long been the focus of various business sectors. Recently there has been an additional drive to achieve the continuous improvement and customer satisfaction promised by the 20th-century ‘gurus’ some six or seven decades ago. The engineering and construction industries have generally taken somewhat longer than their counterparts in the manufacturing, service and production sectors to achieve these espoused levels of quality. The construction and engineering sectors stand to realize major rewards from better managing quality in projects. More effort is being put into instructing future participants in the industry as well as assisting existing professionals. This book comes at an opportune time.
Resumo:
Vehicle emissions are a significant source of fine particles (Dp < 2.5 µm) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions.
Resumo:
Air pollution has significant impacts on both the environment and human health. Therefore, urban areas have received ever growing attention, because they not only have the highest concentrations of air pollutants, but they also have the highest human population. In modern societies, urban air quality (UAQ) is routinely evaluated and local authorities provide regular reports to the public about current UAQ levels. Both local and international authorities also recommended that some air pollutant concentrations remain below a certain level, with the aim of reducing emissions and improving the air quality, both in urban areas and on a more regional scale. In some countries, protocols aimed at reducing emissions have come in force as a result of international agreements.
Resumo:
As the Indonesian construction industry is now promising to become the engine of national economic development, achieving quality and higher performance, not only domestically but also in the international market, are becoming crucial issues. Implementing quality management systems (QMSs) based on ISO 9001 are important in helping Indonesian construction companies become more competitive, for it is acknowledged that quality in construction is a major concern in the global construction industry. However, the possession of ISO 9001 certification does not reflect the presence of a well-operated QMS, which is capable of giving customer and project end-users satisfaction. The review of literature found that there is a significant correlation between a company.s organisational culture and the quality performance of contractors. While research into this area has involved many researchers, there is no critical mass of information specifically related to the Indonesian situation. Studies based on contemporary perspectives of the characteristics of the Indonesian construction organisational culture using Cameron and Quinn.s Organizational Culture Assessment Instrument (OCAI) and its relationship with the contractor.s ISO 9001 practices, have not been previously undertaken. This thesis research, therefore, investigated the culture profiles in Indonesian construction organisations, together with the current implementation of ISO 9001 and their performance during implementing QMSs, as information in these areas has a bearing on the poor performance and low levels of competitiveness of Indonesian construction companies. Questionnaire surveys were distributed to selected representative grade 7 civil engineering contractors located in the two provincial capitals of Makassar and Manado, and the national capital, Jakarta, in order to collect responses designed to examine the effectiveness of their QMSs implementation. The survey also aimed to identify current problems within the systems, and examine the performance of companies while implementing their QMSs. The questionnaire contained questions to assess the organisational culture profiles of Indonesian construction companies, adopting the OCAI. The survey results were then used to analyse the influence of different organisational culture profiles on QMSs implementation among respondent companies. The results from the questionnaire survey supported the development of a Culture-based Quality Management System Improvement Implementation Framework, designed to help Indonesian construction companies identify some typical barriers associated with impacting on effective QMSs implementation; to assist them to develop cultural values that can drive effective QMSs implementation; to undertake effective QMSs practices; and to recognise the potential results and longer-term benefits obtainable from implementing effective QMSs. A Focus Group Discussion was conducted with the assistance of a panel of professional construction practitioners, policy makers and academic experts, which further considered and validated the usefulness and applicability of the framework. Based on the outcome from this discussion and on the results of the earlier data analysis, a final version of the framework was developed to assist Indonesian construction companies in improving their capability of construction project delivery, and thereby contribute to providing or improving the competitive advantage of Indonesian construction companies in the local, national and global construction market.
Resumo:
The concept of market-driven rather than product-driven quality management has been given prominence through the report of a recent inquiry into the performance of the Hong Kong construction industry. The report submitted to the Government of Hong Kong in 2001 establishes a new vision of ‘an integrated industry that is capable of continuous improvement towards excellence in the market-driven environment’. Given the current economic downturn, major contractors are facing many challenges to realize this new quality oriented vision. This paper addresses the critical and timely issue of applying quality management to the project delivery process in Hong Kong. The paper attempts to capture and critically examine management perceptions of quality management aspects as applied to a local large-scale road construction project. Based on the analysis of questionnaire feedback and face-to-face interviews, the paper reveals key attributes of a successful application of quality management approaches, and identifies a mechanism for facilitating such implementation.
Resumo:
This project was conducted at Lithgow Correctional Centre (LCC), NSW, Australia. Air quality field measurements were conducted on two occasions (23-27 May 2012, and 3-8 December 2012), just before and six months after the introduction of smoke free buildings policies (28 May 2012) at the LCC, respectively. The main aims of this project were to: (1) investigate the indoor air quality; (2) quantify the level of exposure to environmental tobacco smoke (ETS); (3) identify the main indoor particle sources; (4) distinguish between PM2.5 / particle number from ETS, as opposed to other sources; and (5) provide recommendations for improving indoor air quality and/or minimising exposure at the LCC. The measurements were conducted in Unit 5.2A, Unit 5.2B, Unit 1.1 and Unit 3.1, together with personal exposure measurements, based on the following parameters: -Indoor and outdoor particle number (PN) concentration in the size range 0.005-3 µm -Indoor and outdoor PM2.5 particle mass concentration -Indoor and outdoor VOC concentrations -Personal particle number exposure levels (in the size range 0.01-0.3 µm) -Indoor and outdoor CO and CO2 concentrations, temperature and relative humidity In order to enhance the outcomes of this project, the indoor and outdoor particle number (PN) concentrations were measured by two additional instruments (CPC 3787) which were not listed in the original proposal.
Resumo:
Service-oriented architectures and Web services mature and have become more widely accepted and used by industry. This growing adoption increased the demands for new ways of using Web service technology. Users start re-combining and mediating other providers’ services in ways that have not been anticipated by their original provider. Within organisations and cross-organisational communities, discoverable services are organised in repositories providing convenient access to adaptable end-to-end business processes. This idea is captured in the term Service Ecosystem. This paper addresses the question of how quality management can be performed in such service ecosystems. Service quality management is a key challenge when services are composed of a dynamic set of heterogeneous sub-services from different service providers. This paper contributes to this important area by developing a reference model of quality management in service ecosystems. We illustrate the application of the reference model in an exploratory case study. With this case study, we show how the reference model helps to derive requirements for the implementation and support of quality management in an exemplary service ecosystem in public administration.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
Characterization of indoor air quality in school classrooms is crucial to children’s health and performance. The present study was undertaken to characterize the indoor air quality in six naturally ventilated classrooms of three schools in Cassino (Italy). Indoor particle number, mass, black carbon, CO2 and radon concentrations, as well as outdoor particle number were measured within school hours during the winter and spring season. The study found the concentrations of indoor particle number were influenced by the concentrations in the outdoors; highest BC values were detected in classrooms during peak traffic time. The effect of different seasons’ airing mode on the indoor air quality was also detected. The ratio between indoor and outdoor particles was of 0.85 ± 0.10 in winter, under airing conditions of short opening window periods, and 1.00 ± 0.15 in spring when the windows were opened for longer periods. This was associated to a higher degree of penetration of outdoor particles due to longer period of window opening. Lower CO2 levels were found in classrooms in spring (908 ppm) than in winter (2206 ppm). Additionally, a greater reduction in radon concentrations was found in spring. In addition, high PM10 levels were found in classrooms during break time due to re-suspension of coarse particles. Keywords: classroom; Ni/Nout ratio; airing by opening windows; particle number