19 resultados para AL-CU-FE
Effect of Al content on the structure of Al-substituted goethite : a micro-Raman spectroscopic study
Resumo:
The characterization of X-ray diffraction, X-ray fluorescence, and field emission scanning electron microscope were used to confirm the successful preparation of Al-substituted goethite with different Al content. The micro-Raman spectroscopy was utilized to investigate the effect of Al content on the goethite lattice. The results show that all the feature bands of goethite shifted to high wavenumbers after the occurrence of Al substitution for Fe in the structure of goethite. The shift of wavenumber shows a good linear relationship as a function of increasing Al content especially for the band at 299 cm−1 (R2 = 0.9992). The in situ Raman spectroscopy of thermally treated goethite indicated that the Al substitution not only hinders the transformation of goethite, but also retarded the crystallization of thermally formed hematite. All the results indicated that Raman spectrum displayed an excellent performance in characterizing Al-substituted goethite, which implied the promising application in other substituted metal oxides or hydroxides.
Resumo:
The concentrations of Na, K, Ca, Mg, Ba, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Ti were determined in the osteoderms and/or flesh of estuarine crocodiles (Crocodylus porosus) captured in three adjacent catchments within the Alligator Rivers Region (ARR) of northern Australia. Results from multivariate analysis of variance showed that when all metals were considered simultaneously, catchment effects were significant (P≤0.05). Despite considerable within-catchment variability, linear discriminant analysis (LDA) showed that differences in elemental signatures in the osteoderms and/or flesh of C. porosus amongst the catchments were sufficient to classify individuals accurately to their catchment of occurrence. Using cross-validation, the accuracy of classifying a crocodile to its catchment of occurrence was 76% for osteoderms and 60% for flesh. These data suggest that osteoderms provide better predictive accuracy than flesh for discriminating crocodiles amongst catchments. There was no advantage in combining the osteoderm and flesh results to increase the accuracy of classification (i.e. 67%). Based on the discriminant function coefficients for the osteoderm data, Ca, Co, Mg and U were the most important elements for discriminating amongst the three catchments. For flesh data, Ca, K, Mg, Na, Ni and Pb were the most important metals for discriminating amongst the catchments. Reasons for differences in the elemental signatures of crocodiles between catchments are generally not interpretable, due to limited data on surface water and sediment chemistry of the catchments or chemical composition of dietary items of C. porosus. From a wildlife management perspective, the provenance or source catchment(s) of 'problem' crocodiles captured at settlements or recreational areas along the ARR coastline may be established using catchment-specific elemental signatures. If the incidence of problem crocodiles can be reduced in settled or recreational areas by effective management at their source, then public safety concerns about these predators may be moderated, as well as the cost of their capture and removal. Copyright © 2002 Elsevier Science B.V.
Resumo:
Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, enrichment factors and Principal Component Analysis –Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.
Resumo:
Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.