18 resultados para 847


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose There are no published studies on the parameterisation and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients. Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial sensors used for the SLS test in stroke patients. Secondary objective: to compare the records of the two inertial sensors (trunk and lumbar) to detect any significant differences in the kinematic data obtained in the SLS test. Methods Design: cross-sectional study. While performing the SLS test, two inertial sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity, Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement and velocity (V): RV=(Vx2+Vy2+Vz2)−−−−−−−−−−−−−−−−−√ Along with SLS kinematic variables, descriptive analyses, differences between sensors locations and intra-observer and inter-observer reliability were also calculated. Results Differences between the sensors were significant only for left inclination velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open (p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer reliability of the trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for the displacement and 0.863-0.884 for velocity. Conclusion There were no significant differences between the kinematic records made by an inertial sensor during the development of the SLS testing between two inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors. Have the potential to be reliable, valid and sensitive instruments for kinematic measurements during SLS testing but further research is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To analyse and compare standing thoracolumbar curves in normal weight participants and participants with obesity, using an electromagnetic device, and to analyse the measurement reliability. Material and Methods. Cross-sectional study was carried out. 36 individuals were divided into two groups (normal-weight and participants with obesity) according to their waist circumference. The reference points (T1–T8–L1–L5 and both posterior superior iliac spines) were used to perform a description of thoracolumbar curvature in the sagittal and coronal planes. A transformation from the global coordinate system was performed and thoracolumbar curves were adjusted by fifth-order polynomial equations. The tangents of the first and fifth lumbar vertebrae and the first thoracic vertebra were determined from their derivatives. The reliability of the measurement was assessed according to the internal consistency of the measure and the thoracolumbar curvature angles were compared between groups. Results. Cronbach’s alpha values ranged between 0.824 (95% CI: 0.776–0.847) and 0.918 (95% CI: 0.903–0.949). In the coronal plane, no significant differences were found between groups; however, in sagittal plane, significant differences were observed for thoracic kyphosis. Conclusion. There were significant differences in thoracic kyphosis in the sagittal plane between two groups of young adults grouped according to their waist circumference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the determination of imidacloprid in paddy water and soil was developed using liquid chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). Separation of imidacloprid was carried out on a Shimadzu C18 column (150 mm × 4.6 mm, 4.6 μm) with an acetonitrile?water (50 : 50, v/v) mobile phase containing 0.1% of acetic acid. The flow rate was 0.3 mL/min in isocratic mode. The product ion at 209 m/z was selected for quantification in multiple-reaction monitoring scan mode. Imidacloprid residues in soil were extracted by a solid-liquid extraction method with acetonitrile. Water samples were filtered and directly injected for analysis without extraction. Detection limits of 0.5 μg/kg and 0.3 μg/L were achieved for soil and water samples, respectively. The method had recoveries of 90 ± 2% (n = 4) for soil samples and 100 ± 2% (n = 4) for water samples. A linear relationship was observed throughout the investigated range of concentrations (1-200 μg/L), with the correlation coefficients ranging from 0.999 to 1.000. © Pleiades Publishing, Ltd., 2010.